

# **DEWATERING AND SETTLEMENT REPORT**

2021

Document Reference:WAI-200-REP-007

| Area: | Sustainability |
|-------|----------------|
| Site: | Waihi          |



# **Document Issuance and Revision History**

Document Name: Dewatering and Settlement Monitoring Report 2021

Document Reference: WAI-200-REP-007

| Date     | Revision<br>No. | Issued for                              | Ву             |
|----------|-----------------|-----------------------------------------|----------------|
| Mar 2017 | 2.0             | OceanaGold New Zealand Waihi Operations | Mark Burroughs |
| Mar 2018 | 2.1             | OceanaGold New Zealand Waihi Operations | Mark Burroughs |
| Apr 2019 | 2.2             | OceanaGold New Zealand Waihi Operations | Mark Burroughs |
| Apr 2020 | 2.3             | OceanaGold New Zealand Waihi Operations | Cassie Craig   |
| Apr 2021 | 2.4             | OceanaGold New Zealand Waihi Operations | Cassie Craig   |
| Apr 2022 | 2.5             | OceanaGold New Zealand Waihi Operations | Mark Burroughs |

# **Approvals**

|              | Position/Title           | Name                      | Date     |
|--------------|--------------------------|---------------------------|----------|
| Authored By: | Snr Env Adv              | M Burroughs               | Mar 2022 |
| Reviewed By: | Hydrogeologist           | Chris Simpson, GWS Ltd    | Mar 2022 |
| Reviewed By: | Geotechnical Engineer    | Eric Torvelainen, EGL Ltd | Apr 2022 |
| Approved By: | Manager - Sustainability | K Watson                  | May 2022 |



# **DEWATERING & SETTLEMENT MONITORING REPORT 2021**

# **TABLE OF CONTENTS**

Appendix D

Appendix E

| EXECL  | JTIVE SU                                      | MMARY                            | 6    |  |
|--------|-----------------------------------------------|----------------------------------|------|--|
| 1      | INTROD                                        | UCTION                           | 8    |  |
| 2      | GEOLO                                         | GICAL SETTING                    | 9    |  |
| 3      | MINING                                        | ACTIVITIES                       | . 11 |  |
| 4      | DEWAT                                         | ERING                            | 16   |  |
| 5      | GROUN                                         | DWATER MONITORING                | 21   |  |
| 6      | SETTLE                                        | MENT MONITORING                  | 46   |  |
| 7      | TILT                                          |                                  | 61   |  |
| 8      | COMPL                                         | AINTS                            | 70   |  |
| 9      | CONTIN                                        | GENCY ACTIONS AND FUTURE IMPACTS | 71   |  |
| 10     | UNDER                                         | GROUND WATER QUALITY             | . 71 |  |
| 11     | IMPROV                                        | EMENT ACTIVITIES                 | 76   |  |
| 12     | PEER R                                        | EVIEW RECOMMENDATIONS 2021       | 76   |  |
| 13     | RESOUR                                        | RCE CONSENT EVALUATION           | 79   |  |
| 14     | CONCLU                                        | JSION                            | 90   |  |
| 15     | REFERE                                        | INCES                            | 91   |  |
|        |                                               |                                  |      |  |
| LIST O | F APPEN                                       | IDICES                           |      |  |
| Appen  | dix A                                         | Relevant Consent Conditions      |      |  |
| Appen  | pendix B Surveyor Reports                     |                                  |      |  |
| Appen  | pendix C Plans of Settlement Marks & Contours |                                  |      |  |
|        |                                               |                                  |      |  |

Pit/Underground & Pit Wall Runoff - Water Quality 2021

Trend Plots of Settlement Zones



# **LIST OF FIGURES**

| Figure 1: Geological map and cross section of the Waihi area showing the distribution quartz veining and dominant geological rock units |    |
|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2: Current workings and boundaries                                                                                               | 12 |
| Figure 3: Oblique view of Correnso showing completed development and stoping ac                                                         |    |
| Figure 4: Oblique view of Martha showing completed development and stoping ac                                                           |    |
| Figure 5: a) Martha Mine/Correnso dewatering rates, and b) Dewatering water levrainfall                                                 |    |
| Figure 6: a) Project Martha dewatering bore locations, and b) 2021 dewatering bore levels                                               |    |
| Figure 7: Correnso, Trio and Favona Pumping Schematic December 2021                                                                     | 19 |
| Figure 8: Martha Underground Pumping Schematic December 2021                                                                            | 20 |
| Figure 9: Waihi Piezometer Network 2021                                                                                                 | 26 |
| Figure 10: Alluvium water level contours                                                                                                | 27 |
| Figure 11: Groundwater Level Trends – Shallow Groundwater (Alluvium & Wea                                                               |    |
| Figure 12: Deeper Younger Volcanic Water Level Contours                                                                                 | 30 |
| Figure 13: Groundwater Level Trends - Deeper Younger Volcanic Materials                                                                 | 31 |
| Figure 14: Andesite Younger Volcanic Materials Contact                                                                                  | 32 |
| Figure 15: Andesite water level contours                                                                                                | 35 |
| Figure 16: Andesite Water Level Trends (excl. VW piezometers)                                                                           | 36 |
| Figure 17: Waihi South Piezometer Levels                                                                                                | 38 |
| Figure 18: P111 Vibrating Wire Piezometer                                                                                               | 38 |
| Figure 19: P112 Vibrating Wire Piezometer                                                                                               | 39 |
| Figure 20: P90 Vibrating Wire Piezometer                                                                                                | 41 |
| Figure 21: P91 Vibrating Wire Piezometer                                                                                                | 41 |
| Figure 22: P92 Vibrating Wire Piezometer                                                                                                | 41 |
| Figure 23: P93 Vibrating Wire Piezometer                                                                                                | 42 |
| Figure 24: P94 Vibrating Wire Piezometer                                                                                                | 42 |
| Figure 25: P95 Vibrating Wire Piezometer                                                                                                | 43 |
| Figure 26: P100 Vibrating Wire Piezometer                                                                                               | 43 |
| Figure 27: P101 Vibrating Wire Piezometer including daily rainfall                                                                      | 43 |
| Figure 28: P102 Vibrating Wire Piezometer                                                                                               | 44 |
| Figure 29: Private bore water levels                                                                                                    | 45 |



| Figure 30: Total Settlement Contours Nov 2021                   | 48 |
|-----------------------------------------------------------------|----|
| Figure 31: Settlement Marker Location Plan & Hazard Zones       | 49 |
| Figure 32: Favona Settlement Nov 2021                           | 50 |
| Figure 33: Triggered settlement marks Nov 2021                  | 51 |
| Figure 34: Zone 1 Waihi Whangamata Road                         | 54 |
| Figure 35: Zone 1 Waihi South                                   | 54 |
| Figure 36: Zone 1 West of Waihi                                 | 55 |
| Figure 37: Zone 1 North of Waihi                                | 55 |
| Figure 38: Favona Settlement Profile                            | 64 |
| Figure 39: Favona Settlement marks and workings                 | 65 |
| Figure 40: Correnso Tilts and Underground Workings              | 67 |
| Figure 41: Underground sample sites – Key Chemistry             | 73 |
| Figure 42: Underground Dewatering Piper Diagram                 | 73 |
| Figure 43: Correnso Underground Piper Trilinear Diagram         | 74 |
| Figure 44: Favona Underground Piper Trilinear Diagram           | 74 |
| Figure 45: Underground Comparison Water Piper Trilinear Diagram | 75 |
| Figure 46: Treated Water Piper Trilinear Diagram                | 75 |



#### **EXECUTIVE SUMMARY**

This Annual Dewatering and Settlement Monitoring Report is a requirement of the consent conditions for the Martha, Favona, Trio, Correnso and Project Martha mining projects, Waihi, New Zealand. Compliance monitoring and assessment of groundwater and settlement trends is reported for the period 1 January to 31 December 2021 and is in accordance with the current Dewatering and Settlement Monitoring Plan submitted to the Hauraki District and Waikato Regional Councils in May 2019.

On 16 July 2017, the Correnso groundwater take permit 124860 was replaced by the Project Martha groundwater take permit 139551. This allows dewatering to a lower level (500 mRL cf. 700 mRL).

New settlement triggers were applied during 2020 following the approval of Project Martha consents. Settlement survey results indicated that 97% (392/403) of marks graphed were within the predicted settlement ranges, based on the settlement resulting from mining activities. 11 marks triggered further investigation. Four settlement marks triggered were above the Favona mining area. The other seven triggered marks are located in the wider Waihi area. No effects were observed at surface near these locations and nearby shallow piezometers have not displayed any associated affect. This is considered an acceptable number of marks triggered.

# Martha Open Pit

Dewatering from the Martha Pit was discontinued on 04 May 2015 after a slip in the pit when access and power supply to the dewatering pumps became limited. Dewatering from within the Correnso underground mine was initiated on 18 May 2015. The Martha, Trio, Correnso and SUPA groundwater systems are hydraulically linked, and water levels are controlled by Correnso underground dewatering.

No drawdown effects caused by mine dewatering were indicated in monitoring bores and no tilt trends have developed during 2021 that can be attributed to dewatering operations.

The analysis of data has indicated that most settlement around Martha Pit had developed by the mid to late 1990s, but widespread small magnitude settlement has been ongoing and is likely to be related to dewatering of deeper structures within the andesite rock mass. Groundwater monitoring data does not show any widespread or significant dewatering of alluvium; of the upper portions of the younger volcanic materials; or dewatering of the upper layers of the andesite rock body which could lead to a greater magnitude of settlement.

No property damage complaints attributable to mine dewatering or settlement in response to mine dewatering were reported during 2021. Compliance was achieved with the consent conditions granted for the Martha Extended Project.

#### **Favona**

At the Favona mine, piezometer levels indicate continued dewatering of the vein system, with the water level maintained at approximately 800mRL mine datum by the end of 2021. Water levels in the country rock surrounding the vein system stand higher and are either not responding or responding slowly to dewatering.

During 2019, a separate flow meter to measure dewatering flow from Favona was installed.

Four Favona marks exceeded settlement prediction, the same as in 2020.

A settlement trend exists over a 150 m wide area above the underground workings with a maximum total settlement of 354 mm (F18), of which up to 305 mm can be attributed to Favona mining activity. This is greater than the 80 mm initially predicted by URS (2002 Technical Report) to be due to dewatering. Settlement is attributed to a combination of depressurisation stress (primary consolidation) associated with drawdown in the andesite rock and relaxation of the country rock as mining proceeded. Primary consolidation (the first time a mine is dewatered) is greater than a second



cycle (subsequent dewatering activities). The Favona mine is outside of the Martha groundwater system; the Martha system was historically dewatered for a longer period and to greater depth and is currently undergoing a second period of dewatering.

Five tilt gradients attributable to Favona mining activity remain steeper than 1:1000; these are on farmland owned by the company and south of the residential area along Barry Road and have all been recorded in previous surveying events.

The previous trigger levels applied to Favona piezometers have been removed. These have been superceded by the Waihi wide triggers introduced as part of the Correnso dewatering consent. The trigger is a 15m water level change within a month. No Favona piezometer had such an increase or decrease. Compliance with the conditions of the Favona consents and Monitoring Plan was achieved.

#### Trio

Water levels were controlled by Correnso dewatering.

#### Correnso

The Correnso underground mine was granted consent and operations began on 20 December 2013.

Waikato Regional Council consents were granted in 2019 permitting the development of the Martha underground mine (Project Martha) and allowing groundwater levels to be lowered beyond the lowest level allowed for the mining of Trio. The Correnso water take permit was activated in July 2017, allowing dewatering to lower the groundwater down to 700 mRL (124860, Schedule One – General Conditions, Condition 1). At the end of 2021 the water level was at approximately 705 mRL.

New settlement trigger levels for Correnso were applied in 2017 and Project Martha superseded these in 2020. During 2021, no settlement mark in the Correnso Extensions Project Area (CEPA) displayed dewatering related settlement and no consent related groundwater trigger was activated. Compliance was achieved with the consent conditions granted for the Correnso Project.

# **SUPA**

The Slevin Underground Project Area is essentially an extension of the Correnso mining area. Mining within the SUPA area began January 16, 2017. No new Waikato Regional Council consents were required for the activity which is covered by the existing WRC consent conditions. The HDC dewatering and settlement related conditions are similar to the WRC conditions for Correnso. No new monitoring or reporting is required as the existing networks adequately encompass SUPA.

#### **MDDP**

The Martha Drill Drives Project (MDDP) was granted consent on August 9, 2017. Mining in the MDDP began August 17, 2017 and was completed during 2019. The project involved the construction of two underground drill drives from the SUPA area towards Martha Pit. No specific HDC conditions relate to dewatering and settlement, rather it is covered by the existing WRC Correnso consent conditions. No new monitoring or reporting is required as the existing networks adequately encompass MDDP.

# **Project Martha**

Consents for Project Martha were granted on 01 February 2019. Joint HDC and WRC consents were activated on July 27, 2019 when blasting began in the project area. The WRC dewatering consent which allows dewatering below 700 mRL for Project Martha was activated on the 1st of January 2020. New dewatering bores were installed during 2020 to progressively lower the water level to enable Project Martha activities.



# 1 INTRODUCTION

This report is submitted to meet the requirements of various consents held by OGNZL related to Dewatering and Settlement. New consents have been issued for different projects as mining has progressed at Waihi with many having conditions and reporting requirements in common. A full list of conditions pertaining to Dewatering and Settlement are included in Appendix A. Consents for Martha, Favona, Trio, Correnso, SUPA, MDDP and Project Martha all require a Dewatering and Settlement Monitoring Plan. Below is a summary of the current consent requirements common to those consents:

The report shall, as a minimum, provide the following information:

- a) The volume of groundwater abstracted;
- b) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
- An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of the future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions, this analysis shall be undertaken by a party appropriately experienced and qualified to assess the information;
- d) Any contingency actions that may have been taken during the year; and
- e) Comment on compliance with [any conditions] of this schedule including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.
- f) The report shall be forwarded in a form acceptable to the Councils.

#### Changes to this year's monitoring report:

Peer review comments received from the 2020 Dewatering and Settlement report suggest the hydrographs were too cluttered. To rectify this the Y axes have been narrowed and some historic dry wells have been removed from the charts.

Hydrographs have also been updated to utilise vibrating wire piezometric data. However due to congestion the andesite vibrating wire levels have been excluded from the hydrograph.

A new section has been included "Peer Review Recommendations". This will allow tracking of recommendation actions (see Section 12).



# 2 GEOLOGICAL SETTING

The mineralised veins of the Martha, Favona, Trio and Correnso gold deposits in Waihi are developed within Miocene age lava flows, intrusives and volcaniclastics of predominantly andesitic and minor dacitic) composition (Figure 1). The andesites extend to depths greater than 600m below the surface and are extensively modified in places by weathering and hydrothermal alteration. The andesites are unconformably overlain by younger, unmineralised rhyolitic ignimbrites that cover much of the Waihi township. The ignimbrites drape over an eroded andesitic graben and horst landscape resulting in a volcaniclastic package that is highly variable in thickness (0 to >100m). Additionally, the ignimbrites exhibit variable textures, ranging from light weight, soft and pumice-rich horizons that are highly permeable to hard, resistant, welded ignimbrites that appear less permeable. Paleosols (buried soils) and sedimentary deposits, such as alluvium and boulder alluvium in places mark the tops of successive eruption sequences.

There is a discontinuous layer of recent alluvium beneath the Waihi township located in areas where old streams and river channels cut into the ignimbrites and andesite units

These alluvial deposits are extensive to the east of Waihi where they are associated with the drainage systems of the Ohinemuri River catchment.

The most common effect of hydrothermal alteration on the andesitic host rocks surrounding the veins is the alteration of primary feldspars to illite and smectite clays and the introduction of pervasive potassic feldspar. Illite and smectite clays generally cause the host rocks to lose their internal strength forming weaker and usually more friable rock. The extent of clay alteration is highly variable and dependant on veining and host rock type. In Waihi the strongly clay altered zones are usually concentrated within close proximity to the veins or faults (eg within the hanging wall of Favona) and within the vein zones themselves (eg Martha, Correnso and Trio). Potassic alteration on the other hand generally increases the overall strength of the host rocks which often results in the rocks surrounding the veins being resistant to weathering and forming bluffs such as the Martha Hill (prior to mining of the Martha Open Pit) and Union Hill in Waihi. Paleo-weathering and hydrothermal alteration appear to have created an extensive low-permeability clay-rich horizon within the upper part of the andesite sequence. This horizon generally separates the andesites, hydrogeologically, from the younger overlying sequence of permeable rhyolitic ignimbrites. Exposure of the altered andesite in the southern wall of the Martha Pit indicates that the weathered clay horizon may extend up to 30m in thickness.

In the vicinity of the Martha vein zone the groundwater is largely concentrated within old underground mine workings, faults and veins where the historical mine workings act as effective conduits allowing inflow of groundwater water from the area surrounding the current Martha Open pit.

Principal veins and faults at both Martha and Favona dip to the south-east while the Correnso vein strikes north-north-west with an easterly dip (Figure 1). The Trio-Union-Amaranth veins are located on a paleotopographic high, informally referred to as the Union Horst that separates the Martha vein system from the Favona-Moonlight vein systems.

There is a hydrogeological connectivity between the Martha vein system and the Trio-Union-Amaranth vein system thought to be facilitated by the connecting Correnso structure. This was demonstrated historically by the rise and fall of ground water levels in the Union Hill shaft in unison with the rise and fall of water levels in the Martha open pit. There is only a very weak hydrogeological connectivity between the Martha system with the Favona system, shown by a lack of mutual response in the measured ground water levels. The zone of separation of the two groundwater systems is not well defined but may be due to a fault boundary, either the No 9 fault or the Favona footwall fault, both of which are north to northeast trending and have a perceived strike extent exceeding 1km



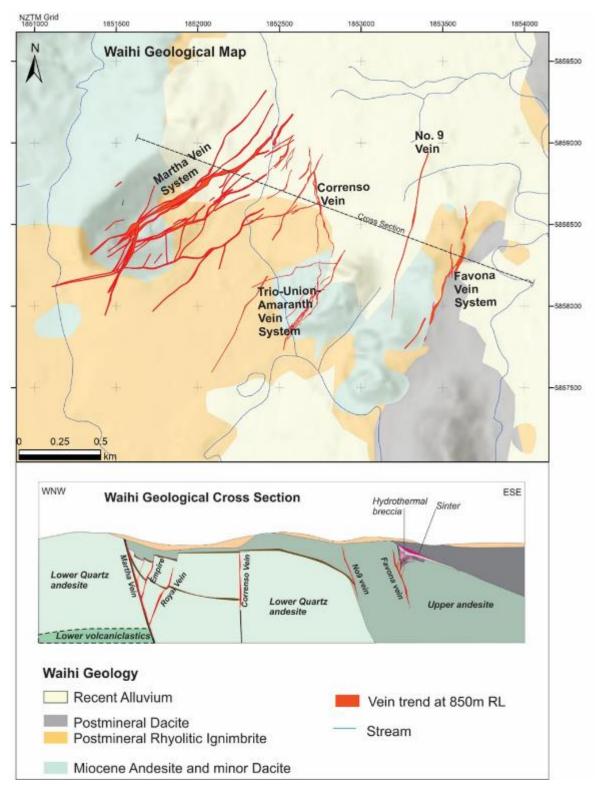



Figure 1: Geological map and cross section of the Waihi area showing the distribution of quartz veining and dominant geological rock units

Groundwater inflow is, predominantly, controlled by infiltration from overlying layers and through outcrops of ignimbrite in the beds of streams and at the ground surface. The rhyolitic ignimbrite sequence is considered to be compressible and has accounted for most of the dewatering induced settlement around the mine site. This is indicated by settlement magnitude generally corresponding to the thickness of and the magnitude of dewatering in these materials.



# 3 MINING ACTIVITIES

The main features of the mining activities during 2021 (in relation to dewatering and settlement) are described in the following sections.

# 3.1 Martha Open Pit

Access to Martha Pit during 2021 has been restricted due to the North Wall slip. No works were undertaken in the pit during 2021. The pit remains in care and maintenance.

#### 3.2 Underground

# 3.2.1 Development

2021 saw development in the Correnso Upper, and Martha mining areas (Figure 3 & Figure 4), consisting mainly of declines, accesses and ore drives in Martha. Throughout 2022 a total of 9,872m of development was completed with the vast majority in Martha with only 386m being in Upper Correnso.

2021 saw approximately a total of 287,428t of ore extracted from both stopes and development.

# 3.2.2 Future Mining Activities

Production will be focussed in Martha with ore drives and stopes being focussed on the Rex, Edward, and Royal West mining areas. Minor amount of narrow vein production will be carried out in the upper portions of Correnso (approx. 950mRL). For a full breakdown of the activities planned refer to the Annual Work Programme.

#### 3.2.3 Waste rock management

Waste rock is managed in two ways; underground stockpiling and backfilling into stopes and placement on temporary stockpiles on the surface.

On the surface, a short-term stockpile is maintained immediately behind the mill area, enabling easy access for backloading. Larger or longer-term volumes may be stored at the Favona 'Polishing Pond' Stockpile (near the water treatment plant polishing pond). Waste rock placement at this stockpile started in early February 2007 and the site has also been utilised for interim placement of Martha ore. Before undertaking stockpile construction, the Favona Underground Mine Settlement, Dewatering and Water Quality Monitoring Plan was prepared, and approved by Waikato Regional Council (WRC). A separate Favona Water Quality Monitoring Report is prepared mid-year and submitted to WRC.



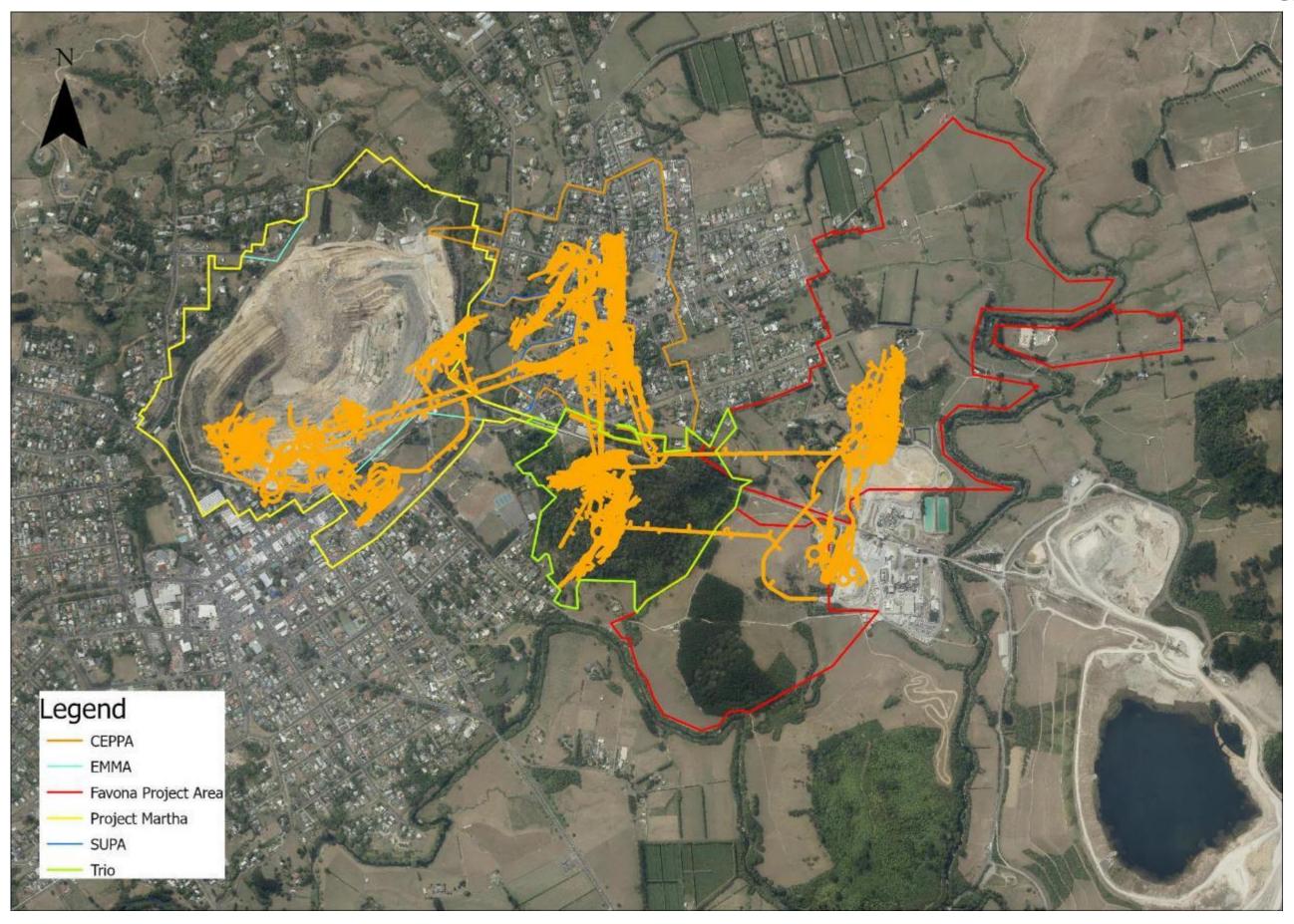



Figure 2: Current workings and boundaries



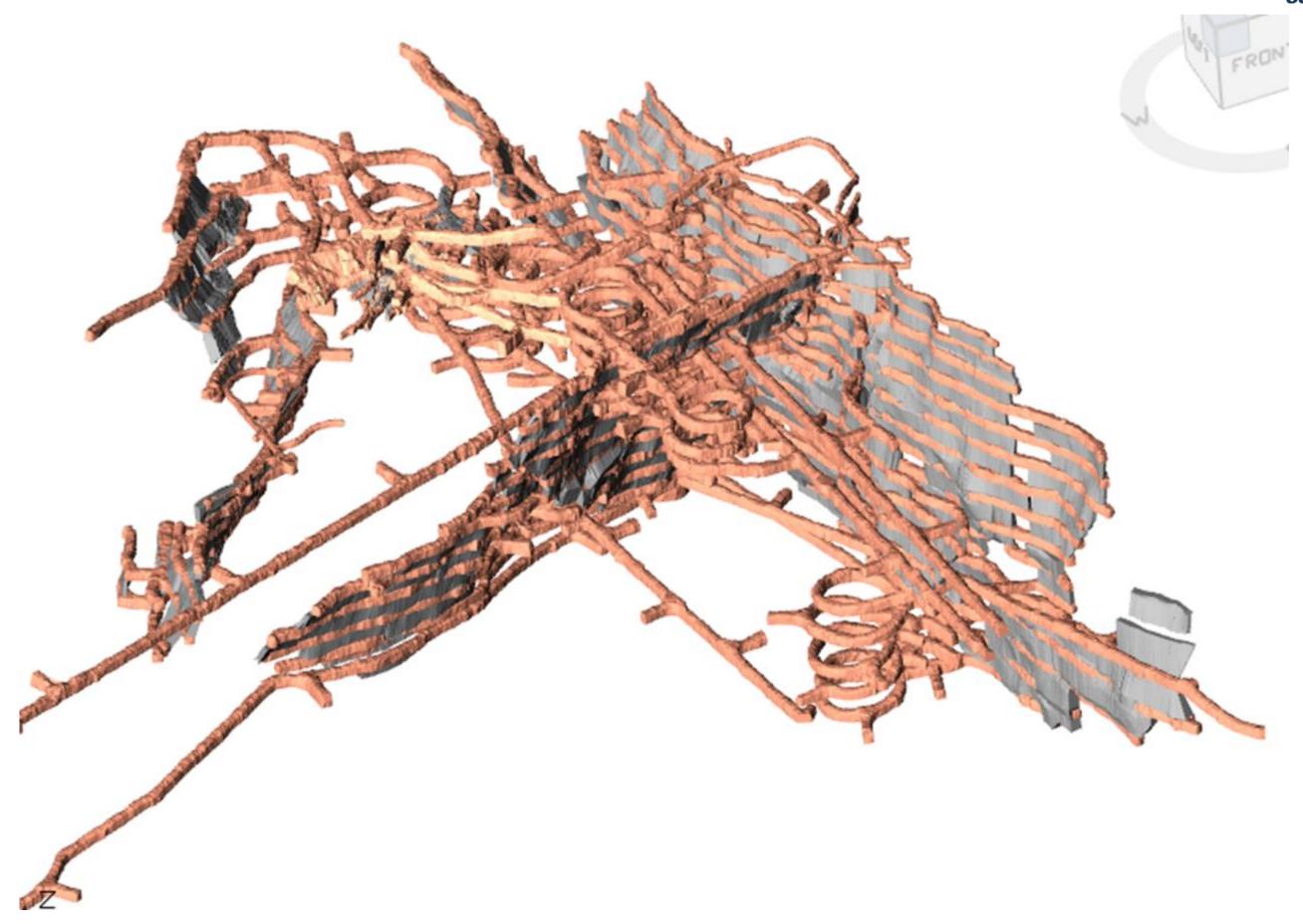



Figure 3: Oblique view of Correnso showing completed development and stoping activities. View is looking north east from above.



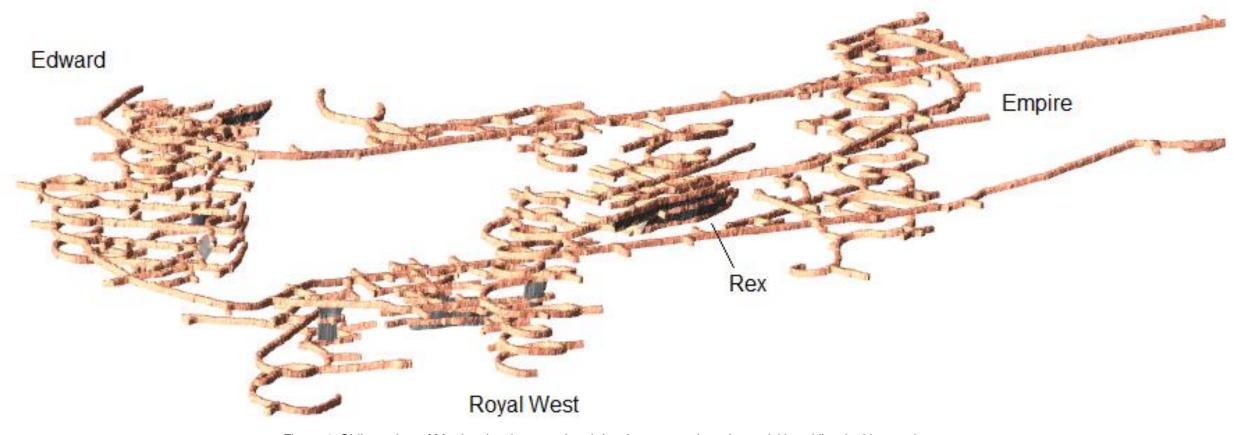



Figure 4: Oblique view of Martha showing completed development and stoping activities. View looking north east

WAI-200-REP-007





#### 4 DEWATERING

Table 1 shows the annual combined abstraction rate from Martha, Favona, Correnso and Trio. Figure 5 shows groundwater take rates and water levels and Figure 6 and Figure 8 show the current pump arrangement for underground dewatering.

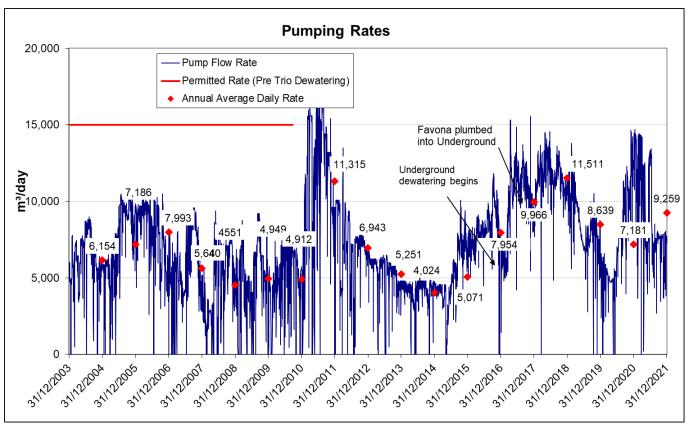
During 2020, four dewatering pumps in two bores (800 PC1 and 800 PC2) were installed from the 800 mRL level to lower water levels for Project Martha development. Dewatering to 500 mRL is permitted under the Project Martha consent. Dewatering water from these bores is connected to the existing Correnso dewatering line. Water levels began to be drawn down using these pumps during 2021. At the end of year levels were PC1 667 mRL and PC2 664 mRL (Figure 6).

Table 1 - Martha, Favona, Trio & Correnso Mines Annual Dewatering Volumes and Rates

| Year                      | Total mine take | Average pump  | Service water                 | Total Mine take minus           |
|---------------------------|-----------------|---------------|-------------------------------|---------------------------------|
|                           | $(m^3)$         | rate (m³/day) | pumped                        | Service Water (m <sup>3</sup> ) |
|                           |                 |               | underground (m <sup>3</sup> ) |                                 |
| 2015 (May                 | 1,338,760       | 5,871         | 60,727 (23 Sep                | 1,278,033                       |
| 18 <sup>th</sup> onwards) |                 |               | onwards)                      |                                 |
| 2016                      | 2,911,046       | 7,954         | 181,466                       | 2,729,580                       |
| 2017                      | 3,637,734       | 9,996         | 219,198                       | 3,418,536                       |
| 2018                      | 4,285,048       | 11,511        | 262,227                       | 4,022,821                       |
| 2019                      | 3,153,288       | 8,639         | 254,859                       | 2,898,429                       |
| 2020                      | 2,687,124       | 7,342         | 173,290                       | 2,513,834                       |
| 2021                      | 3,379,568       | 9,259         | 182,803                       | 3,196,765                       |

At the request of a peer reviewer, a standalone flow meter for the Favona dewatering line was installed in December 2019, abstraction rates from Favona are shown in Table 2.

Table 2 - Favona Mine Annual Dewatering Volumes and Rates


| Year | Favona Mine take (m³)                  | Average pump rate (m³/day) |
|------|----------------------------------------|----------------------------|
| 2019 | 1,637 (first reading 12 December 2019) | 125                        |
| 2020 | 14,313                                 | 39                         |
| 2021 | 14,539                                 | 39                         |

Note: for continuity, Favona abstraction volumes are also included in 'Total mine take' numbers reported in Table 1.

# 4.1 Future Dewatering

The Project Martha dewatering consent, which allows dewatering to no lower than 500 mRL. Underground water levels were drawn to ~665 mRL in 2021. They will be progressively lowered during 2022, The target pumping rate is 37 L/s at each of the four pumps. Water levels are projected to be lowered by an additional 40 m in 2022. Water levels in the dewatering bores are currently being measured approximately weekly using a water level dip meter. Pressure transducers will be installed during 2022 to collect continuous water level readings.





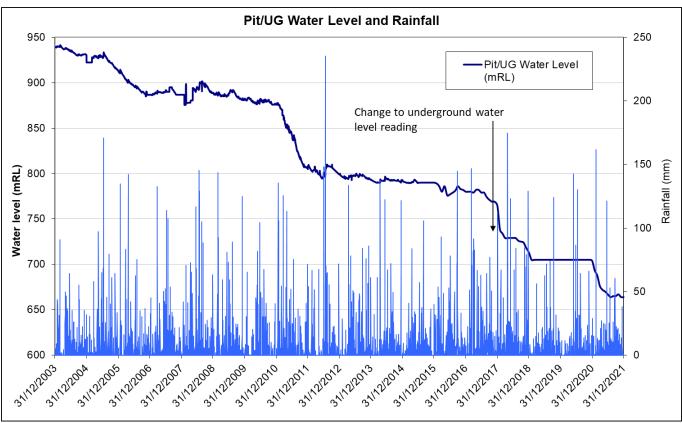
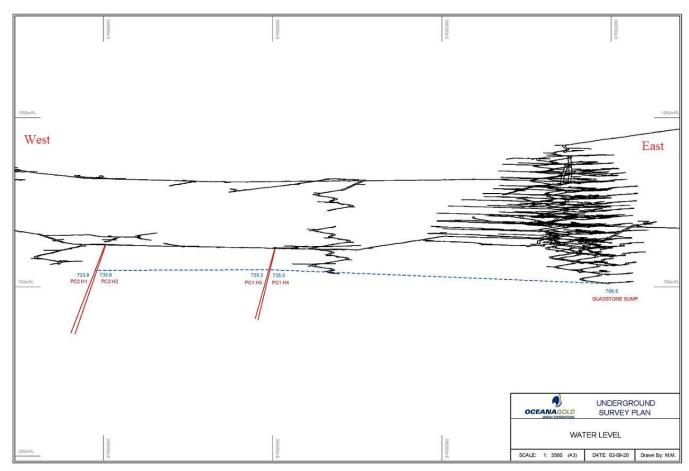




Figure 5: a) Martha Mine/Correnso dewatering rates, and b) Dewatering water level and rainfall





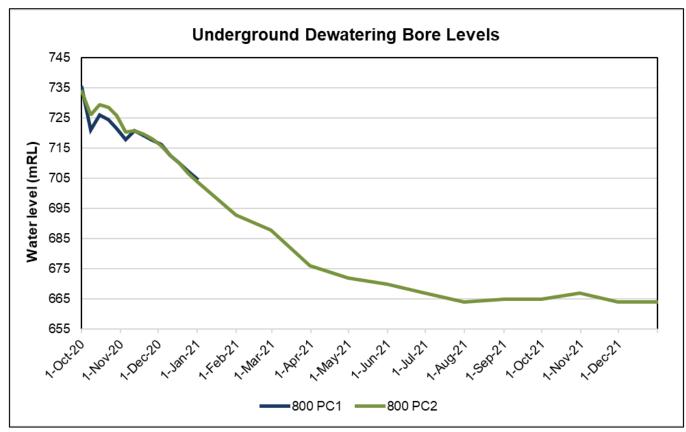



Figure 6: a) Project Martha dewatering bore locations, and b) 2021 dewatering bore water levels



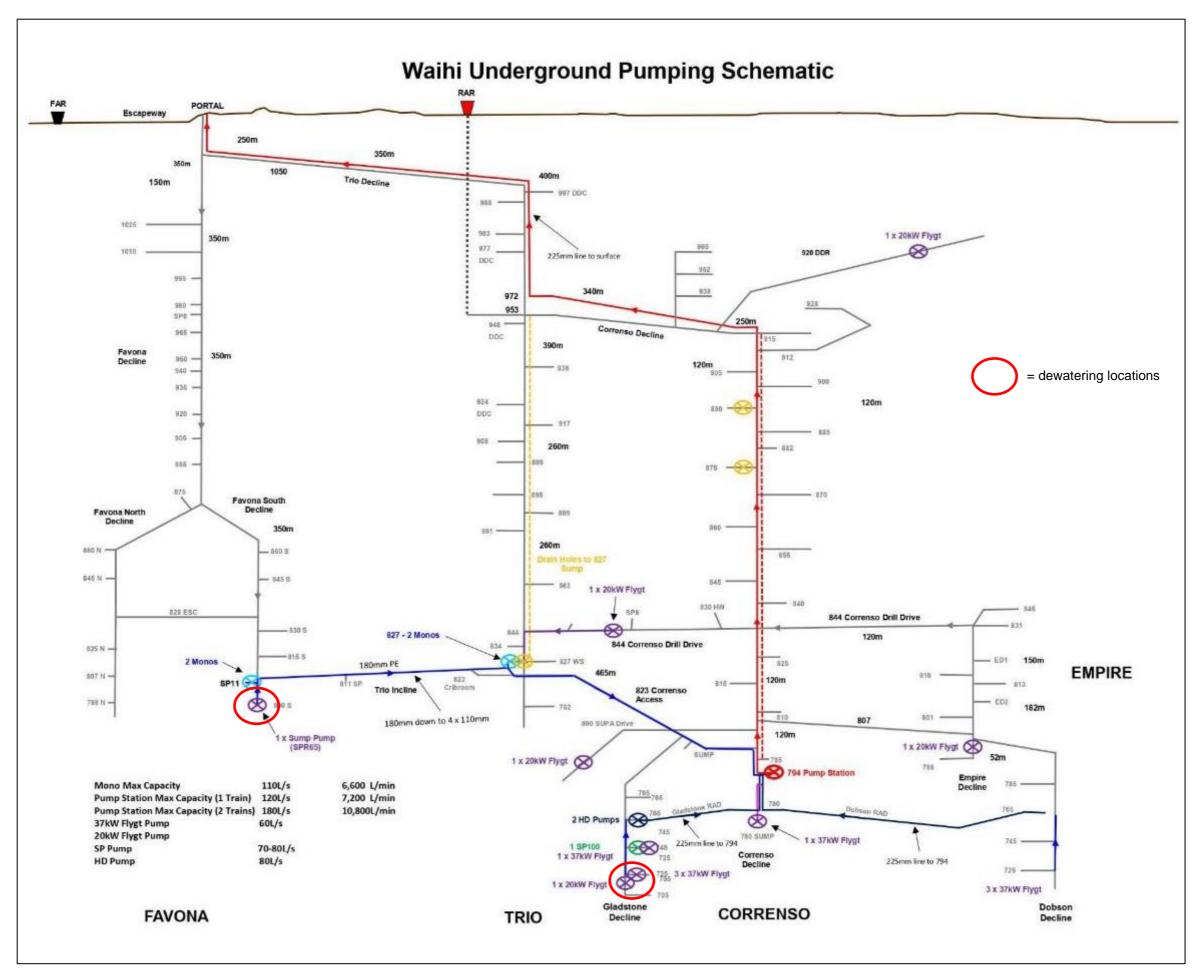



Figure 7: Correnso, Trio and Favona Pumping Schematic December 2021



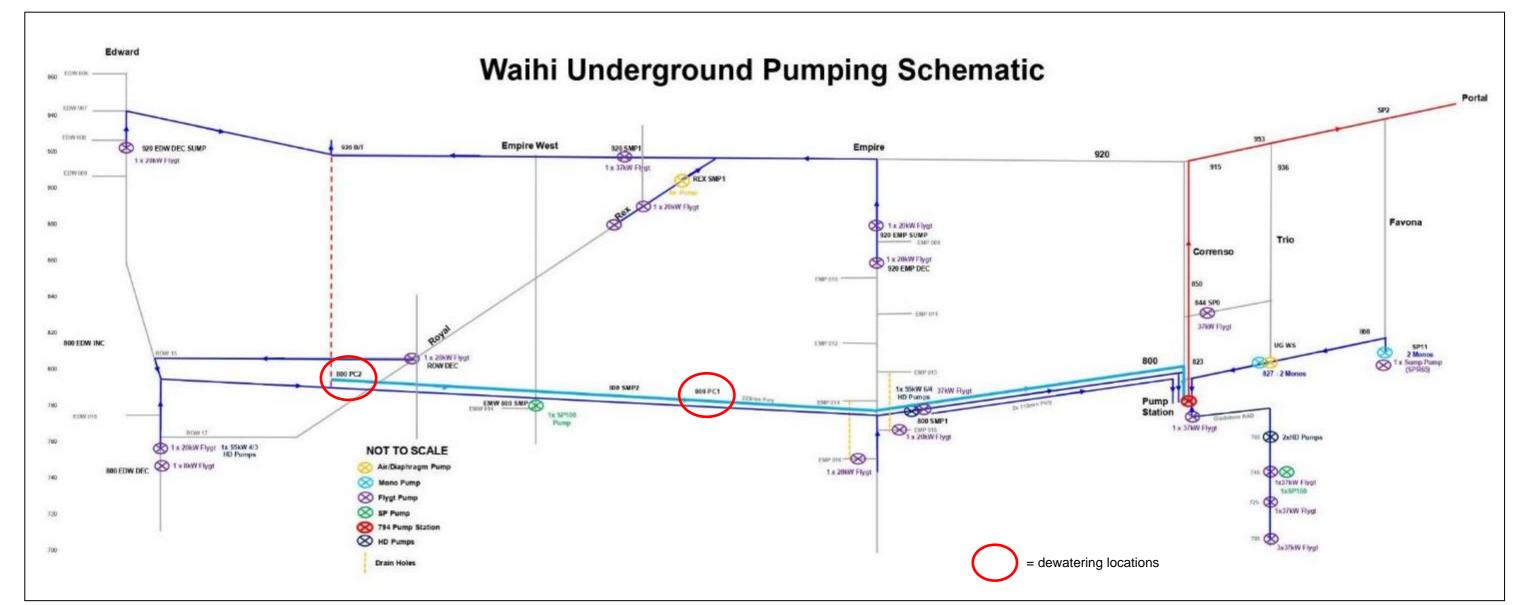



Figure 8: Martha Underground Pumping Schematic December 2021



# 5 GROUNDWATER MONITORING

This section is provided to meet Conditions 13 a, b and c of the Martha consent, Conditions 2a, 4b, and 4c Schedule 2 of the Favona consent, Conditions 6(ii) and (iii) of the Trio Development consent (referred to by the Trio Underground Mine Consent 6.1.1), Condition 35 of the Correnso Underground Mine Consent and Condition 29 of the SUPA Consent. It includes:

- Data from monitoring undertaken during the previous year including groundwater contour plans (derived from the data) in respect of the piezometer network.
- Identification and interpretation of any environmentally important trends in dewatering behaviour or groundwater profile. Existing trends identified prior to end of 2020 will not be discussed in depth unless there has been a significant change or trigger reached.

#### 5.1 Method

OGNZL has maintained a piezometer network within and around Martha Mine since 1987 and Favona Mine since 2004. Additional Correnso/SUPA piezometers were installed in 2011, 2014 and 2016. P106 was drilled and four vibrating wire piezometers installed in that drill hole during 2017. It is located to the north west of Martha Pit (Figure 9). Seven Project Martha piezometers were added to the network during 2019 and a further three were completed during 2020. The current piezometer network, well depths and average 2021 water depths are in Table 3.



Table 3: Current Waihi Piezometer Network

| ALLUVIUM                                                                                  |                                                                                                                      |                                                                                                                      |                                                                                       |                                                                                                                                                                                                                             |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Well ID                                                                                   | Depth<br>(mRL)                                                                                                       | 2021<br>GWL<br>(m RL)                                                                                                | Water<br>Depth<br>(m)                                                                 | Туре                                                                                                                                                                                                                        |  |  |
| P2-4                                                                                      | 1101                                                                                                                 | 1107                                                                                                                 | 6                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| P8-4                                                                                      | 1113                                                                                                                 | 1118                                                                                                                 | 5                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| P76-S*                                                                                    | 1109                                                                                                                 | 1111                                                                                                                 | 2                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| P77-S*                                                                                    | 1110                                                                                                                 | 1114                                                                                                                 | 4                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| P87-S                                                                                     | 1110                                                                                                                 | 1115                                                                                                                 | 5                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| WC201-4                                                                                   | 1103                                                                                                                 | 1111                                                                                                                 | 8                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| WC201-5                                                                                   | 1109                                                                                                                 | 1111                                                                                                                 | 2                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| P91-1                                                                                     | 1113                                                                                                                 | 1119                                                                                                                 | 6                                                                                     | VWP                                                                                                                                                                                                                         |  |  |
| P93-1                                                                                     | 1105                                                                                                                 | 1116                                                                                                                 | 11                                                                                    | VWP                                                                                                                                                                                                                         |  |  |
| P94-1                                                                                     | 1114                                                                                                                 | 1115                                                                                                                 | 1                                                                                     | VWP                                                                                                                                                                                                                         |  |  |
| P101-1                                                                                    | 1102                                                                                                                 | 1108                                                                                                                 | 6                                                                                     | VWP                                                                                                                                                                                                                         |  |  |
| P102-1                                                                                    | 1108                                                                                                                 | 1114                                                                                                                 | 6                                                                                     | VWP                                                                                                                                                                                                                         |  |  |
| P63-S*                                                                                    | 1113                                                                                                                 | 1116                                                                                                                 | 3                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
| GLD004S                                                                                   | 1080                                                                                                                 | 1085                                                                                                                 | 5                                                                                     | Standpipe                                                                                                                                                                                                                   |  |  |
|                                                                                           | YOUNG                                                                                                                | VOLCAN                                                                                                               | NIC .                                                                                 |                                                                                                                                                                                                                             |  |  |
| Well ID                                                                                   | Depth<br>(mRL)                                                                                                       | 2021<br>GWL<br>(m RL)                                                                                                | Water<br>Depth<br>(m)                                                                 | Туре                                                                                                                                                                                                                        |  |  |
| BH6-1                                                                                     | 1052                                                                                                                 | 1111                                                                                                                 | 59                                                                                    | Ctandaina                                                                                                                                                                                                                   |  |  |
|                                                                                           |                                                                                                                      |                                                                                                                      | 39                                                                                    | Standpipe                                                                                                                                                                                                                   |  |  |
| BH9-1                                                                                     | 1073                                                                                                                 | 1095                                                                                                                 | 22                                                                                    | Standpipe                                                                                                                                                                                                                   |  |  |
| BH9-1<br>BH11                                                                             |                                                                                                                      |                                                                                                                      |                                                                                       |                                                                                                                                                                                                                             |  |  |
|                                                                                           | 1073                                                                                                                 | 1095                                                                                                                 | 22                                                                                    | Standpipe                                                                                                                                                                                                                   |  |  |
| BH11                                                                                      | 1073<br>1074                                                                                                         | 1095<br>1093                                                                                                         | 22<br>19                                                                              | Standpipe<br>Standpipe                                                                                                                                                                                                      |  |  |
| BH11<br>BH12                                                                              | 1073<br>1074<br>1090                                                                                                 | 1095<br>1093<br>1106                                                                                                 | 22<br>19<br>16                                                                        | Standpipe<br>Standpipe<br>Standpipe                                                                                                                                                                                         |  |  |
| BH11<br>BH12<br>P2-3                                                                      | 1073<br>1074<br>1090<br>1073                                                                                         | 1095<br>1093<br>1106<br>1092                                                                                         | 22<br>19<br>16<br>19                                                                  | Standpipe<br>Standpipe<br>Standpipe<br>Standpipe                                                                                                                                                                            |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2                                                              | 1073<br>1074<br>1090<br>1073<br>1047                                                                                 | 1095<br>1093<br>1106<br>1092<br>1088                                                                                 | 22<br>19<br>16<br>19<br>41                                                            | Standpipe Standpipe Standpipe Standpipe Standpipe                                                                                                                                                                           |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2<br>P7-2                                                      | 1073<br>1074<br>1090<br>1073<br>1047<br>1039                                                                         | 1095<br>1093<br>1106<br>1092<br>1088<br>1090                                                                         | 22<br>19<br>16<br>19<br>41<br>51                                                      | Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe                                                                                                                                                       |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2<br>P7-2<br>P7-3                                              | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080                                                                 | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090                                                                 | 22<br>19<br>16<br>19<br>41<br>51                                                      | Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe                                                                                                                                             |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2<br>P7-2<br>P7-3<br>P8-3                                      | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092                                                         | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116                                                         | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24                                          | Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe Standpipe                                                                                                                                   |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2<br>P7-2<br>P7-3<br>P8-3<br>P63-I                             | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070                                                 | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091                                                 | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21                                    | Standpipe                                                                                                               |  |  |
| BH11<br>BH12<br>P2-3<br>P4-2<br>P7-2<br>P7-3<br>P8-3<br>P63-I<br>P76-I                    | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072                                         | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104                                         | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32                              | Standpipe                                                                                           |  |  |
| BH11 BH12 P2-3 P4-2 P7-2 P7-3 P8-3 P63-I P76-I P77-I and P77-I2                           | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072<br>1045                                 | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104<br>1097                                 | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32<br>52                        | Standpipe                                                                       |  |  |
| BH11 BH12 P2-3 P4-2 P7-2 P7-3 P8-3 P63-I P76-I P77-I and P77-I2 P79-I                     | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072<br>1045<br>1061                         | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104<br>1097<br>1092                         | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32<br>52<br>31                  | Standpipe                                                   |  |  |
| BH11 BH12 P2-3 P4-2 P7-2 P7-3 P8-3 P63-I P76-I P77-I and P77-I2 P79-I P79-S               | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072<br>1045<br>1061<br>1091                 | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104<br>1097<br>1092<br>1096                 | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32<br>52<br>31<br>5             | Standpipe                               |  |  |
| BH11 BH12 P2-3 P4-2 P7-2 P7-3 P8-3 P63-I P76-I P77-I and P77-I2 P79-I P79-S P87-I         | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072<br>1045<br>1061<br>1091<br>1070         | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104<br>1097<br>1092<br>1096<br>1110         | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32<br>52<br>31<br>5<br>40       | Standpipe           |  |  |
| BH11 BH12 P2-3 P4-2 P7-2 P7-3 P8-3 P63-I P76-I P77-I and P77-I2 P79-I P79-S P87-I WC202-2 | 1073<br>1074<br>1090<br>1073<br>1047<br>1039<br>1080<br>1092<br>1070<br>1072<br>1045<br>1061<br>1091<br>1070<br>1049 | 1095<br>1093<br>1106<br>1092<br>1088<br>1090<br>1090<br>1116<br>1091<br>1104<br>1097<br>1092<br>1096<br>1110<br>1065 | 22<br>19<br>16<br>19<br>41<br>51<br>10<br>24<br>21<br>32<br>52<br>31<br>5<br>40<br>16 | Standpipe |  |  |



| P91-2   | 1097           | 1117                  | 20                    | VWP       |
|---------|----------------|-----------------------|-----------------------|-----------|
| P91-3   | 1011           | 1112                  | 101                   | VWP       |
| P92-1   | 1096           | 1118                  | 22                    | VWP       |
| P92-2   | 1000           | 1107                  | 107                   | VWP       |
| P93-2   | 1015           | 1088                  | 73                    | VWP       |
| P94-2   | 1094           | 1112                  | 18                    | VWP       |
| P94-3   | 1016           | 1100                  | 84                    | VWP       |
| P95-1   | 1091           | 1114                  | 23                    | VWP       |
| P95-2   | 1031           | 1101                  | 70                    | VWP       |
| P100-1  | 1066           | 1075                  | 9                     | VWP       |
| P100-2  | 996            | 1050                  | 54                    | VWP       |
| P101-2  | 1083           | 1094                  | 11                    | VWP       |
| P101-3  | 1068           | 1085                  | 17                    | VWP       |
| P102-2  | 1078           | 1089                  | 11                    | VWP       |
| P102-3  | 1054           | 1085                  | 31                    | VWP       |
| P107    | 1089           | 1111                  | 22                    | Standpipe |
| P108    | 1115           | 1122                  | 7                     | Standpipe |
| P109    | 1090           | 1095                  | 5                     | Standpipe |
| P110    | 1097           | 1104                  | 7                     | Standpipe |
| P111-1  | 1100           | 1107                  | 7                     | VWP       |
| P112-1  | 1058           | 1059                  | 1                     | VWP       |
| P114    | 1054           | 1058                  | 4                     | Standpipe |
| P115    | 1072           | 1094                  | 22                    | Standpipe |
| P116    | 1045           | 1092                  | 47                    | Standpipe |
| P64-I   | 1086           | 1098                  | 12                    | Standpipe |
| P78-I   | 1051           | 1103                  | 52                    | Standpipe |
| P27-1   | 1073           | 1075                  | 2                     | Standpipe |
| BH7-1   | 1078           | 1092                  | 14                    | Standpipe |
| GLD004I | 1065           | 1085                  | 20                    | Standpipe |
| P113    | 1063           | 1063                  | 0                     | Standpipe |
|         | AN             | IDESITE               |                       |           |
| Well ID | Depth<br>(mRL) | 2021<br>GWL<br>(m RL) | Water<br>Depth<br>(m) | Туре      |
| P2-2    | 1034           | 1045                  | 11                    | Standpipe |
| P7-1    | 988            | 1002                  | 14                    | Standpipe |
| P8-1    | 975            | 1022                  | 47                    | Standpipe |
| P8-2    | 1044           | 1116                  | 72                    | Standpipe |
| P9-1    | 1036           | 1118                  | 82                    | Standpipe |
| P69-S   | 1114           | 1134                  | 20                    | Standpipe |
| P69-D   | 1063           | 1091                  | 28                    | Standpipe |
| WC201-1 | 1058           | 1064                  | 6                     | Pneumatic |



| WC201-2 | 1077 | 1080 | 3   | Pneumatic |
|---------|------|------|-----|-----------|
| WC201-3 | 1096 | 1100 | 4   | Pneumatic |
| WC202-1 | 1031 | 1069 | 38  | Pneumatic |
| P90-3   | 982  | 1085 | 103 | VWP       |
| P91-4   | 970  | 1100 | 130 | VWP       |
| P92-3   | 965  | 1100 | 135 | VWP       |
| P93-4   | 974  | 1038 | 64  | VWP       |
| P94-4   | 976  | 991  | 15  | VWP       |
| P95-3   | 1000 | 1060 | 60  | VWP       |
| P100-3  | 981  | 1043 | 62  | VWP       |
| P100-4  | 956  | 990  | 34  | VWP       |
| P101-4  | 1036 | 1036 | 0   | VWP       |
| P102-4  | 1026 | 1032 | 6   | VWP       |
| P75     | 979  | 1067 | 88  | Standpipe |
| P76-D   | 1055 | 1098 | 43  | Standpipe |
| P77-D   | 1031 | 1097 | 66  | Standpipe |
| P78-D   | 1052 | 1072 | 20  | Standpipe |
| P79-D   | 1047 | 1088 | 41  | Standpipe |
| P87-D   | 1024 | 1102 | 78  | Standpipe |
| P106-1  | 1100 | 1100 | 0   | VWP       |
| P106-2  | 1060 | 1060 | 0   | VWP       |
| P106-3  | 1010 | 1010 | 0   | VWP       |
| P106-4  | 974  | 974  | 0   | VWP       |
| P111-2  | 1088 | 1088 | 0   | VWP       |
| P111-3  | 1055 | 1059 | 4   | VWP       |
| P112-2  | 1035 | 1035 | 0   | VWP       |
| P112-3  | 997  | 999  | 2   | VWP       |
| ВН8     | 1075 | 1075 | 0   | Standpipe |
| P1-1    | 1065 | 1065 | 0   | Standpipe |
| P4-1    | 994  | 1098 | 3   | Standpipe |
| GLD004D | 1020 | 1085 | 65  | Standpipe |
| 1       |      |      |     |           |

All piezometers are monitored on a monthly basis as required by the consent conditions. The water levels are translated to the mine datum reference level to enable comparison between bores or areas. Vibrating wire piezometers record values at daily intervals with the data downloaded monthly.

# 5.2 Inspection and Maintenance

The piezometer dip-meter is maintained in good working condition. A calibration of the dip-meter tape against a reference tape is carried out annually by Hydrologic NZ Ltd. The dip-meter tape is replaced if the difference against the reference tape is more than 0.1%. The dip-meter was calibrated in January 2021.

The consent conditions require an inspection of the piezometer installations and appraisal of the piezometer network every two years. In effect, inspections of the piezometer network are undertaken



more frequently, with the piezometer monitoring procedure requiring 6-monthly sounding to the bottom of all standpipe piezometers to identify any with excess silt and mud.

The piezometer designs have screens which allow water inflow into the pipe. Piezometers that are most impacted by sediment are on a flushing schedule, with flushing of silted boreholes occurring in November of 2019. Piezometers P4-1, P4-3, P8-2, P9-2, and P9-3 have showed little change after multiple flushing attempts and are no longer monitored.

#### 5.3 Groundwater Results

The Waihi town piezometer network currently has 52 dipped piezometers and six pneumatic piezometers. An additional 12 data loggers connected to 41 vibrating wire piezometers are also included in monitoring Waihi East and south of Martha Pit (Figure 9). On the north east side of the pit, seven real time data loggers are installed in wells, these were installed to investigate the source of a seepage and data collection is ongoing. Groundwater contour plans have been updated for the three principal geological units: alluvium (plus shallow groundwater in weathered younger volcanic materials); younger volcanics (including ignimbrite); and andesite. The groundwater plans are presented in Figure 10, Figure 12 and Figure 15 respectively. Discussion of results for each unit follows.

Only the andesite contour map includes data from the vibrating wire piezometers. Alluvium and younger volcanics contour maps have not included vibrating wire piezometers as the vertical gradients evident do not provide a unique water level.

#### 5.3.1 Changes to monitoring network 2021

- No new piezometer locations were added to the network during 2021.
- P8-2 responded to flushing in 2019 but has again increased in water level.
- P64-D (Favona network) developed a blockage and/or collapse. Monitoring has been discontinued.
- Recently installed P109 (Young volcanics, Project Martha) was tar sealed over by Hauraki District Council contractors. It was able to be uncovered early 2022.
- Martha pit seep investigation loggers were removed as enough data had been gathered.
   These piezometers were not part of the dewatering monitoring network and monitoring has been discontinued.





Figure 9: Waihi Piezometer Network 2021



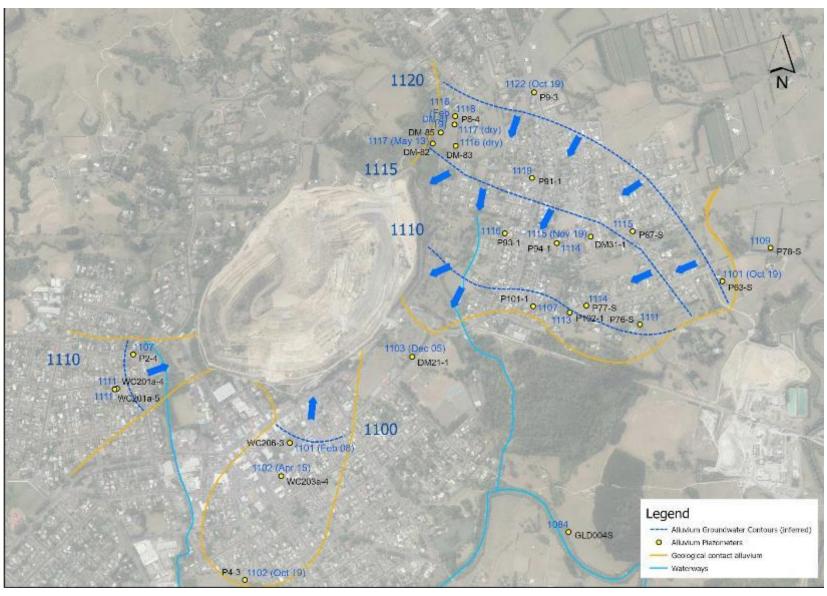



Figure 10: Alluvium water level contours



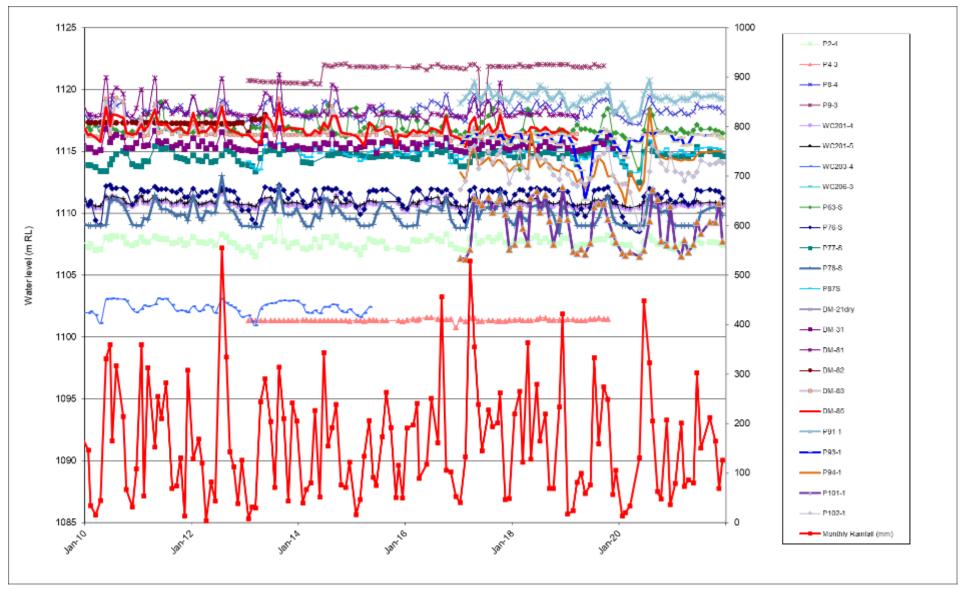



Figure 11: Groundwater Level Trends – Shallow Groundwater (Alluvium & Weathered Contact of Young Volcanics)



#### 5.3.2 Shallow Groundwater

Figure 10 shows the inferred contours for shallow groundwater in alluvium and in weathered younger volcanic materials and shows the water level trends over time. The overall contour pattern and the trend plots demonstrate that the shallow groundwater system remains essentially unaffected by dewatering of the surface and underground mining operations. Shallow groundwater levels are controlled, principally, by rainfall infiltration, low surface soil permeability and natural and assisted drainage to surface water systems.

Contouring of the lobe southwest of Martha Mine (Figure 10) has been restricted by the loss of access to the wells at sites WC203 and WC206. For the purposes of completing the contour plan it was assumed that groundwater levels in the alluvium at these locations remained the same as in previous years.

A request at peer review 2021 was made to include the Waihi East vibrating wire (VW) alluvium piezometer information in the alluvium hydrograph. P91, P93, P94, P101 and P102 have VW tips located in alluvium. These have been included in Figure 10.

# 5.3.3 Younger Volcanics

Groundwater contours in the deeper portions of the younger volcanic materials below the shallow groundwater system are shown on Figure 12 and trends are graphed on Figure 13.

The younger volcanic materials infill topographic depressions in the surface of the andesite rock body in which the open pit and underground mines are constructed.

Groundwater level change and the associated consolidation of the varying thickness of these relatively weak younger volcanic materials is considered to be responsible for much of the settlement and for the settlement patterns around Martha and Favona mines.

The dewatering pattern in the younger volcanics around Martha Mine indicates drainage towards the open pit. The limited groundwater discharge at the contact of the younger volcanic materials with the underlying andesite in the pit (see Figure 12 and 12) suggests drainage is affected by features other than the contact (which defines a paleovalley in the andesite). The most likely additional drain point is a substantial block cave evident in the pit wall. This block cave, referred to as the Milking Cow, was active during historical underground operations and resulted in substantial settlement of the ground surface, down-folding of fill and younger volcanic strata and close fracturing of the welded ignimbrite layers.

Prior to the start of dewatering at Martha Mine, groundwater levels in all rock units were similar. With the onset of mine dewatering, water levels in the veins and historic workings were drawn down. Groundwater levels in the various rock units below the shallow aquifer showed increasing vertical separation until about the mid to late 1990's. Thereafter, the water levels (in other than the veins and workings) stabilised and have remained stable since. This pattern is demonstrated in monitoring wells at site P2. With piezometer P2-1 following the vein water levels until water level dropped below the piezometer tip, P2-2 the upper andesite water levels P2-3, younger volcanic rock water levels and P4-2 alluvium (shallow aquifer) (Figure 15).

Piezometers P1-1 and P1-2 were lost in early 2016 due to public carpark resurfacing.

The development of the settlement pattern has shown a similar behaviour with an initial higher rate of settlement followed by a much-reduced rate of settlement once groundwater levels in the upper rock layers stabilised. These patterns are discussed in the following sections.

BH11 and BH12 have been included in the young volcanics hydrograph. These were historically listed as andesite piezometers. The piezometers are currently under review by GWS Limited as part of a wider assessment of the Waihi piezometer network. Findings of the review will be after this report's submission to regulators.



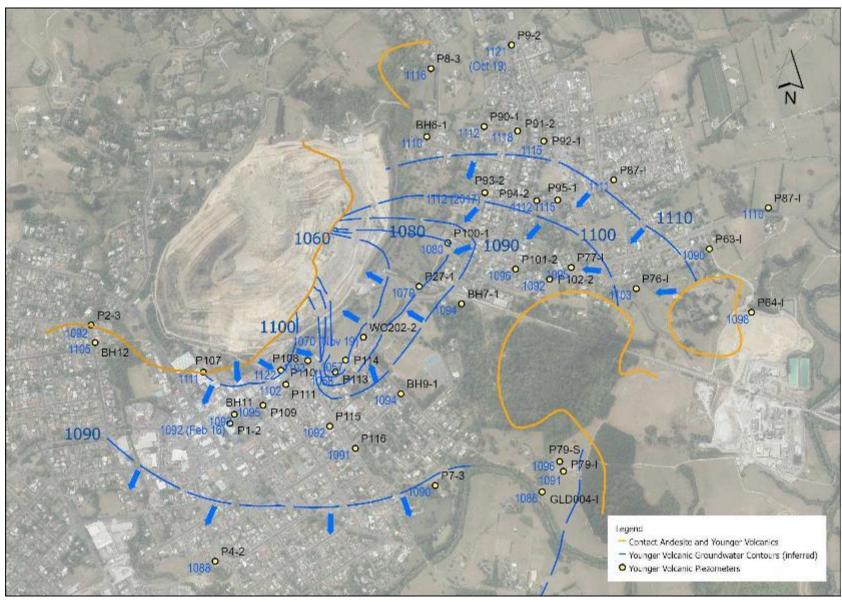



Figure 12: Deeper Younger Volcanic Water Level Contours



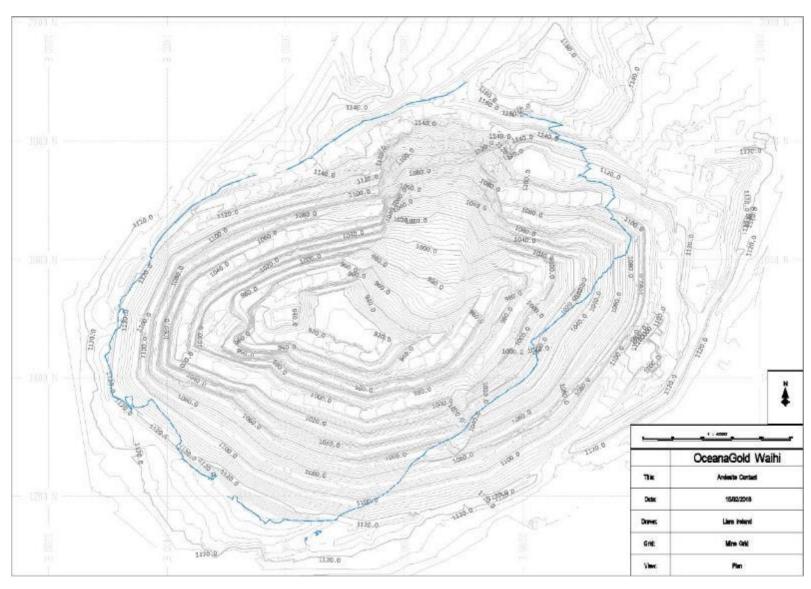



Figure 13: Groundwater Level Trends - Deeper Younger Volcanic Materials



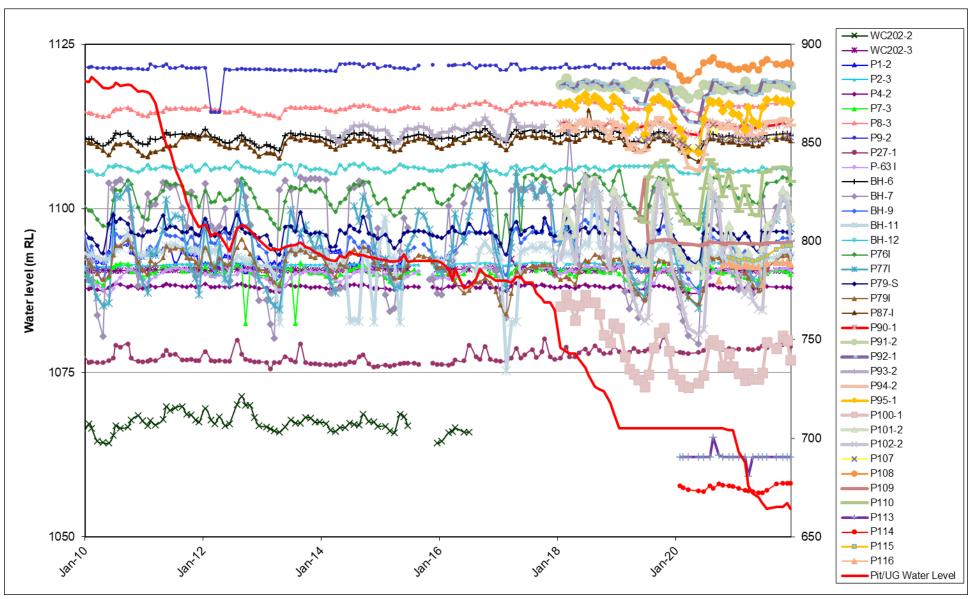



Figure 14: Andesite Younger Volcanic Materials Contact

WAI-200-REP-007





#### 5.3.4 Andesite

Andesite rock forms the local basement rock body for the area and hosts the mineralisation which was being mined at Martha Pit and is mined in the Underground.

Figure 15 shows the scope of the dewatering effects in the andesite rock body as a result of dewatering. Data from the Waihi East vibrating wire piezometer units have been included. Figure 16 provides the water level trends in the andesite rock body. While groundwater level data is available for the vein systems and the shallower andesite rock, no monitoring data is available for intermediate depths within the andesite rockmass outside of development areas. Hence, groundwater levels between the vein and the shallow rockmass have been interpolated.

Groundwater levels in the andesite vein systems have responded rapidly and substantially to mine dewatering along the strike of the Martha vein system, along the strike of the Trio vein system beneath Union Hill, and also along the strike of the Favona/Moonlight vein systems (Figure 15). An area of dewatering, indicated between Martha Mine and Trio/Correnso vein systems, suggests a relatively close linkage. Outside of these structures, the dewatering effect in the andesite rock is attenuated or absent. This is illustrated by the different responses shown on Figure 16.

The Martha Mine dewatering effect continues to be abruptly attenuated to the north of the mine and also to the west of the mine. This is considered to be the result of faulting which truncates the veining. A lobe of dewatering extends to the southwest of Martha Mine and this is considered to be due to the drainage effect along the N-S Edward lode structure. Dewatering is shown to reduce eastwards along the Martha system but may extend further at depth as the host rocks are more deeply buried in that direction and no deep monitoring wells are available for confirmation.

Figure 15 also indicates the dewatering centralised on the Favona system with the restriction of connection between Favona and the Union systems. The geological model in Section 3 indicates an up-thrown block (Union Horst, Figure 15) between the Union and Favona systems. This structural hiatus is likely to account for the restricted groundwater interconnection between the Martha-Union and Favona systems.

The andesite hydrograph (Figure 16) is congested so the vibrating wire piezometers have been excluded. VW hydrographs are presented in Figures 18 - 28.



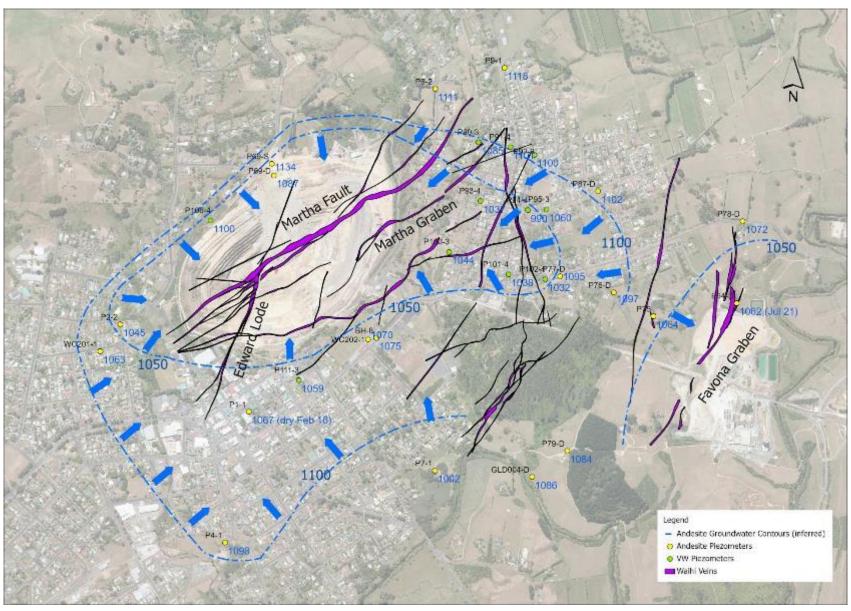



Figure 15: Andesite water level contours



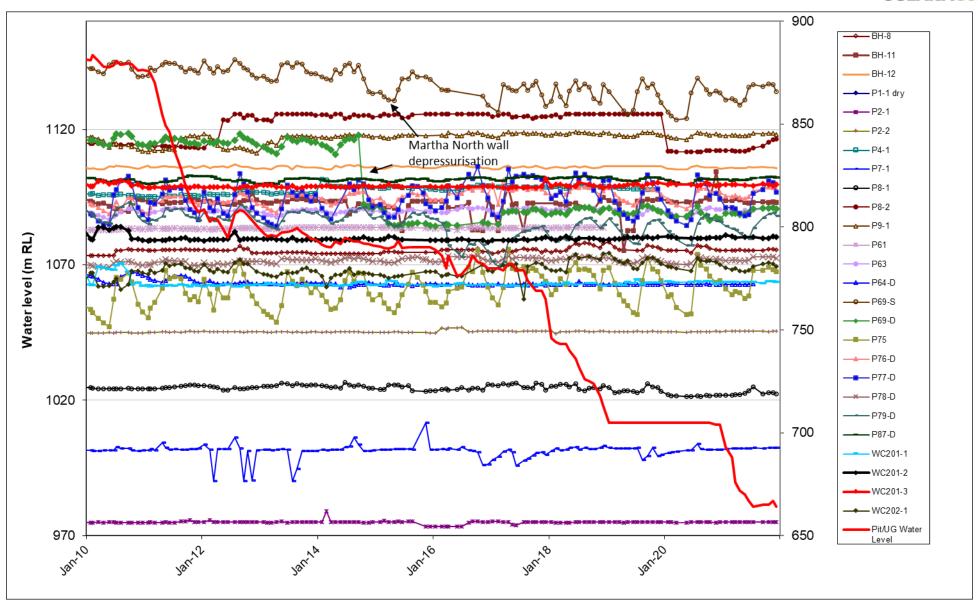



Figure 16: Andesite Water Level Trends (excl. VW piezometers)



#### 5.3.5 Martha groundwater assessment

Martha groundwater remained stable during the reporting period (Figure 16). No triggers were breached, or trends of concern developed.

10 new wells were installed in 2019 and 2020 (Table 4).

Table 4: Project Martha piezometer depths

|      | Young        | Volcanics          |           | Ar  | ndesite         |      |  |
|------|--------------|--------------------|-----------|-----|-----------------|------|--|
| Bore | Depth<br>(m) | Piezo Tip<br>(mRL) | Depth (m) |     | Piezo Tip (mRL) |      |  |
| P107 | 30           | 1089               |           |     |                 |      |  |
| P108 | 9.8          | 1116               |           |     |                 |      |  |
| P109 | 22           | 1091               |           |     |                 |      |  |
| P110 | 16.8         | 1097               |           |     |                 |      |  |
| P111 | 13           | 1100               | 25        | 58  | 1088            | 1055 |  |
| P112 | 50           | 1057               | 72        | 110 | 1035            | 995  |  |
| P113 | 46           | 1058               |           |     |                 |      |  |
| P114 | 55           | 1054               |           |     |                 |      |  |
| P115 | 30.8         | 1103               |           |     |                 |      |  |
| P116 | 53.3         | 1098               |           |     | -               | -    |  |

Project Martha piezometers P107 to P110 and P113 to P116 are standpipes installed at varying ground elevations. Figure 17 shows water levels have remained fairly settled. Some initial changes to P109 and P110 are likely due to well flushing after installation. Newly drilled standpipe P113 has remained dry.

Vibrating wire piezometer P111 (Figure 18) was installed with three tips, one in the young volcanics and two in the andesite layer. The younger volcanic piezometer is measuring some water pressure at 1102mRL. The upper andesite piezometer appears to be dry with levels recorded below the tip level (1087mRL cf. 1088mRL), indicating this area may be previously affected by dewatering. The lower andesite piezometer is measuring around 4m of water pressure above the tip, at 1059mRL.

P112 is also a vibrating wire design installed with three tips: one in the young volcanics and two in the andesite layer. Water levels have remained stable in all three piezometers since installation in July 2020 (Figure 19).

A peer recommendation was to identify lithology zones on the vibrating wire hydrographs. The key to the zone shading is shown in Table 5.

Table 5: Lithology shading

| Lithology       |  |
|-----------------|--|
| Alluvium        |  |
| Young Volcanics |  |
| Andesite        |  |

Additionally, a concern was raised at peer review that the P111 and P112 andesite piezometers could be too shallow. OGNZL are currently looking into options for better deeper groundwater resolution in this area.



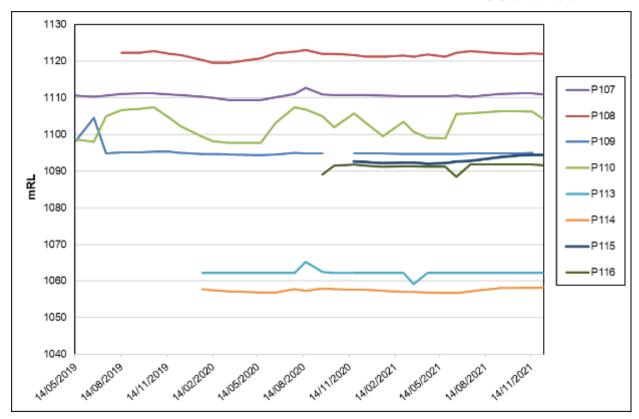



Figure 17: Waihi South Piezometer Levels

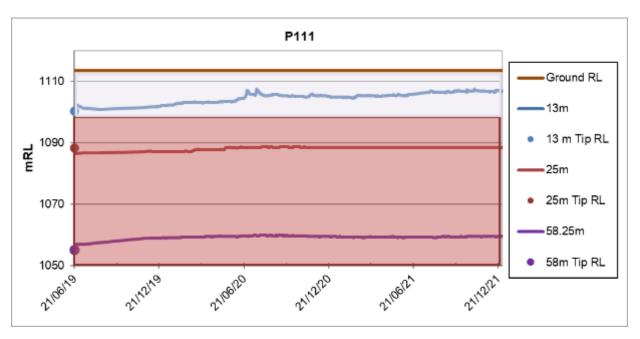



Figure 18: P111 Vibrating Wire Piezometer



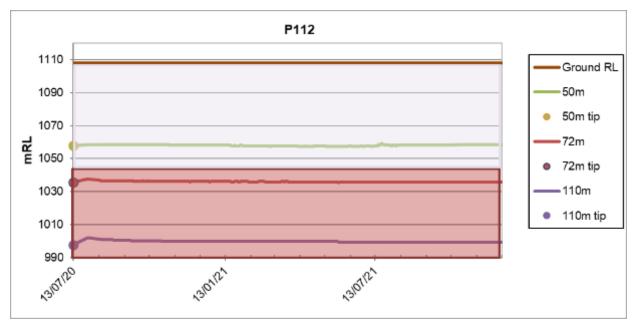



Figure 19: P112 Vibrating Wire Piezometer

### 5.3.6 Favona groundwater assessment

Favona groundwater gathers at the 800 level and this is the assumed groundwater level in the Favona mine. However, mine development links Favona to Trio and Correnso, both part of the Martha groundwater system. Figure 16 shows how most Favona wells are influenced seasonally and not by Martha/Underground dewatering. The Favona wells used to have individual triggers applied to them as part of the Favona mine compliance, however these have now been superceded by the general Correnso trigger of a 15m change in water level in one month. No well had a 15m decrease during the reporting period.

### 5.3.7 Waihi East - CEPA

Six groundwater monitoring boreholes were installed between July – September 2011. They are located east of the Martha pit to provide improved groundwater information in an area with few existing wells and in the vicinity of the Correnso Project. Two additional vibrating wire piezometer boreholes and 39 additional settlement markers were installed in early 2014. One further borehole was installed in 2016 for monitoring related to the Daybreak/SUPA orebody.

The piezometers were located across and perpendicular to the Correnso vein system in three lines (P90, P91 and P92 forming one line, P93, P94 and P95 a second line and P100, P101 and P102 the third). Separation distance between the northern and southern lines is some 500m (Figure 9). The piezometers were constructed to intercept the shallow aquifer, younger volcanics, and andesite rock (Table 6).



Table 6: Geological Units and Depths P90-P95, P100-P102 Piezometers

| Bore | Shallow | Younger | And        | esite   |     |
|------|---------|---------|------------|---------|-----|
|      |         | Upper   | Basal Zone |         |     |
| P90  | -       | 20      | 100        | 137     |     |
| P91  | 9.3     | 25.5    | 111.3      | 15      | 1.3 |
| P92  | -       | 23.3    | 121.3      | 15      | 6.3 |
| P93  | 12.3    | 26      | 100        | 14      | 13  |
| P94  | 6       | 25      | 104        | 14      | 14  |
| P95  | -       | 35      | 90         | 12      | 20  |
| P100 | -       | 50      | 120        | 135 160 |     |
| P101 | 12.8    | 32      | 47         | 78      |     |
| P102 | 8       | 38      | 62         | 9       | 0   |

Figures 20 to 28 provide the records from the piezometers expressed as mRL. The charts also display the depth of the piezometer tips. Separation between the shallow and deeper piezometers is evident in the records. The nine groundwater monitoring boreholes have indicated stable water levels in Waihi East. Exceptions are discussed below.

Note: Gaps in the data are due to either brief logger malfunction issues or flat batteries in the unit



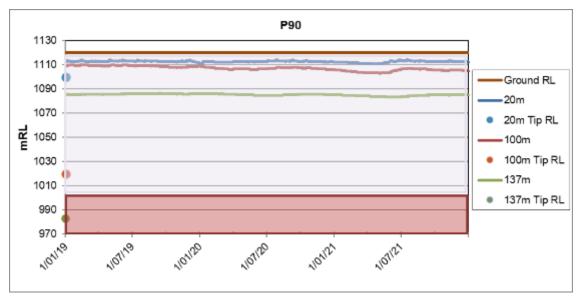



Figure 20: P90 Vibrating Wire Piezometer

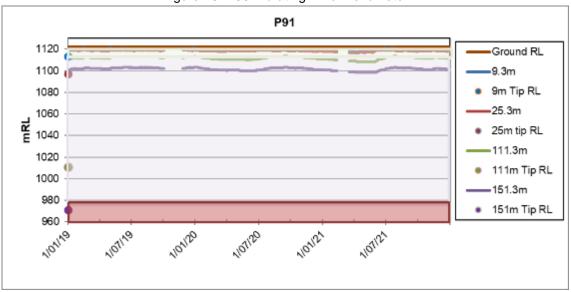



Figure 21: P91 Vibrating Wire Piezometer

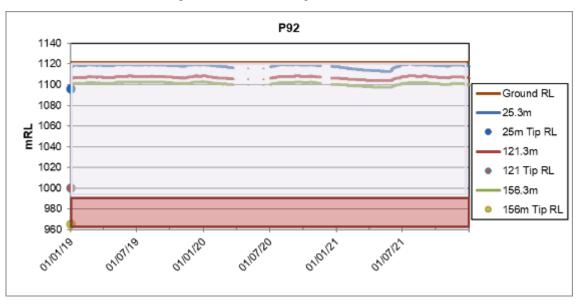



Figure 22: P92 Vibrating Wire Piezometer



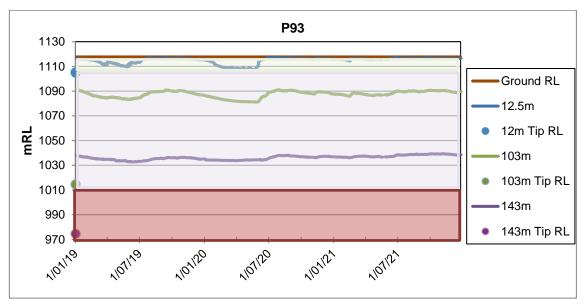



Figure 23: P93 Vibrating Wire Piezometer

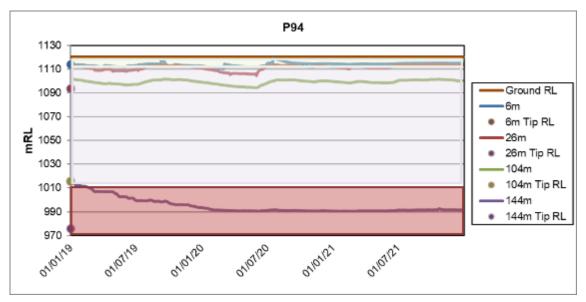



Figure 24: P94 Vibrating Wire Piezometer



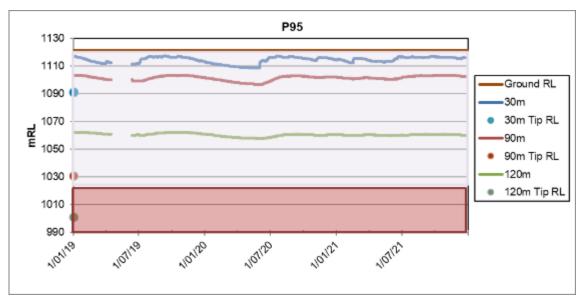



Figure 25: P95 Vibrating Wire Piezometer

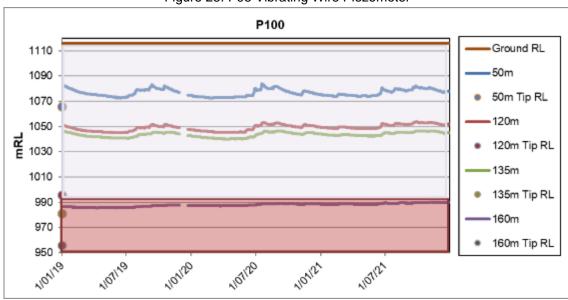



Figure 26: P100 Vibrating Wire Piezometer

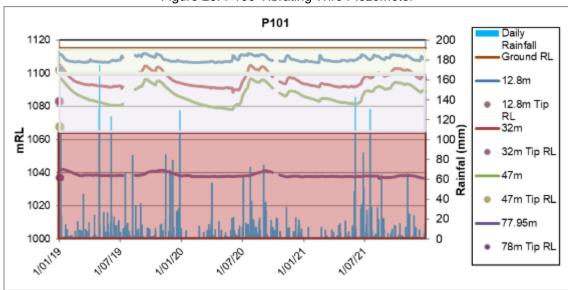



Figure 27: P101 Vibrating Wire Piezometer including daily rainfall



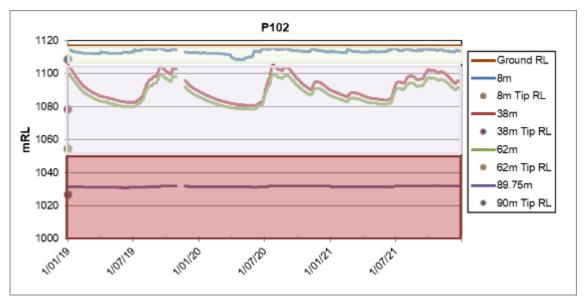



Figure 28: P102 Vibrating Wire Piezometer

Piezometric levels in the Younger Volcanics have continued to show some dependence on rainfall. This is particularly evident with P100, P101 and P102. This ongoing fluctuation does not appear to have any significant effect on ground surface settlement.

During 2018 and 2019, the 975 mRL piezometer in well P94 showed a drop in pressure believed to be a result of nearby mining causing relaxation in the country rock surrounding the piezometer tip. The pressure has stabilised through 2021 with water levels remaining at around 990mRL. The shallower piezometers at this location have not displayed any unusual drop in pressure and there have been no anomalous trends in nearby settlement markers (BM24, MATAURA1, 24F) identified.

P101-4, an andesite piezometer, appears to have little water pressure (Figure 27). The tip is at ~1037 mRL and at the end of the 2021 monitoring period water pressures gradually lowered from 1037.71 to 1036.59 mRL. The three piezometers above show no such gradual decline and are reactive to wet and dry periods. OGNZL will continue to monitor P101 monthly and note any trends in 2022.

# 5.3.8 Private Wells

The private wells are bores mainly used for water supply (Figure 9). They show seasonal fluctuations in groundwater levels and these levels can also be influenced by landowners using the bore. The Whangamata Rd and Mataura Rd bores can no longer be accessed due to health and safety concerns. There is no indication of any influence in the bores from mine dewatering (Figure 29).



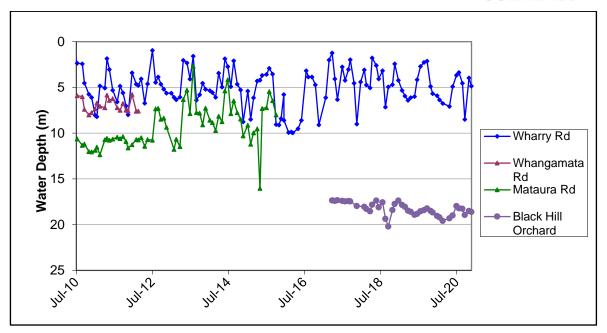



Figure 29: Private bore water levels



### 6 SETTLEMENT MONITORING

Condition 13b of the Extended Martha Mine consent requires the identification of any environmentally important trends in settlement behaviour. Condition 13d of the same consent requires that a comparison of the settlement survey data with that predicted for the consent.

A reassessment for the settlement prediction was conducted for the Trio Development Project (Engineering Geology, June 2010). This review assessed the effect of pumping from the Martha pit to draw down the groundwater level progressively to 755mRL, which would also dewater the connected Trio system.

Another reassessment was conducted for the Correnso Underground project (Engineering Geology, 2012). The report recommended new trigger levels for settlement based on additional depressurisation of the andesite layer.

Further reassessment was undertaken for Project Martha with dewatering to below 700 mRL authorised. New triggers were applied during the 2020 reporting period (Table 7).

A review of the settlement marker network was undertaken during 2019 by GWS Ltd. This resulted in the removal of erroneous and high-density settlement markers for settlement plotting and trigger assessments.

Seven settlements zones were defined around the Martha Mine pit in 1999, extending to the outskirts of Waihi. The zones were established based on the first ten years (pre-extension) of settlement history having regard to the then current knowledge of the thickness and composition of compressible materials (such as ash-soils, alluvium, lake sediments, and unconsolidated younger volcanic deposits) and the expected effect from Martha Mine dewatering. Table 7 provides the most recent update of the Settlement Zone trigger levels, approved in 2019 and applied following the commencement of Project Martha in 2020, to reflect the changed mining and dewatering conditions. Figure 30 shows the predicted settlement zones. These have also been updated with the commencement of Project Martha.

Table 7 - Table of Predicted Settlement with Project Martha Trigger Levels

| Zone              | New Trigger Levels (mm)<br>Project Martha (2020) |
|-------------------|--------------------------------------------------|
| Settlement Zone 1 | 55                                               |
| Settlement Zone 2 | 65                                               |
| Settlement Zone 3 | 95                                               |
| Settlement Zone 4 | 160                                              |
| Settlement Zone 5 | 260                                              |
| Settlement Zone 6 | 340                                              |
| Settlement Zone 7 | 540                                              |

The settlement measured is an accumulation of all causes of settlement. Generally, this is considered to be the result of mine dewatering, but close to the mines and (in the case of Favona) overlying the mine areas, additional settlement may be the result of primary consolidation settlement (as opposed to reconsolidation settlement which is the process in the Martha groundwater system where historic dewatering resulted in groundwater levels dropping to lower elevations for a longer time period than is proposed for current mining activity). Nevertheless, it is the total settlement that is discussed in this report as settlement due to dewatering alone cannot be separated from other causes.

Comment is provided in relation to the predicted settlements given in Table 7 and these comments are expanded on where monitoring data show exceedance of the trigger values.



#### 6.1 Method

The initial settlement survey network was established in 1980 during the exploration phase of the project and has been regularly monitored since December 1987. Over the course of the project, settlement survey marks have been added, removed or replaced, as required, to extend the network or to compensate for damaged sites.

Figure 31 shows the location of settlement marks monitored by OGNZL up to the end of 2021. Also, included on Figure 31 are the defined subsidence hazard zones related to historical underground mine stopes and shafts (IGNS, 2002). Figure 32 provides the settlement monitoring marks across the Favona Mine and shows the locations of the Favona Mine workings in relation to the marks. Figure 33 provides the marks identified as triggered during the November 2021 survey.

Settlement monitoring was undertaken in May/June and November/December 2021 across the settlement network surrounding Waihi Township (refer Appendix C) and also along the Favona network which is an extension of the Martha mine survey network. Appendix B presents the two summary settlement monitoring reports. For simplicity this report refers to surveys as May and November 2021.

The raw data provided by the surveyors has been graphed and where changes in the record are apparent as a result of mark relocation or replacement, corrections have been applied using graphical projection so that total settlement over the life of mining can be determined for each location. The correction process applied was as follows:

- Updating the time-history graph for all data from settlement markers with data up to 1/11/2021.
- Where changes in the time-history graph identified a datum change, a correction was arrived at by projecting the initial data visually on the graph to the time of the new datum and a correction calculated. A smooth settlement curve resulting after the correction was applied and similarity of curve shape to those of adjacent marks was taken as indicating an acceptable correction.
- Where marks were installed in May 1999, the previously determined settlement for that location from 1988 to 1999 was applied as a correction.
- Where marks were installed or changed other than in May 1999, the previously assessed settlement at the location as of May 1999 was used with a best fit trend line of settlement in time to correct the values to be consistent with the May 1999 value.
- For Favona marks, settlement values as at 1/12/2005 were assessed for each location and used to correct the new marks to account for settlement from 1988 to 2005.
- The corrected data has then been used to generate:
  - Settlement-time trend graphs for each zone.
  - Plans of total settlement.
  - Contours of total settlement.
  - Calculation of tilt.
  - Settlement-time trend graphs of specific areas.
- Where Favona development has affected settlement, a projection of the pre-Favona mine settlement trend has been made as a means to estimate the current Martha Mine settlement and this settlement value has been subtracted from the total measured settlement to provide an estimate of the settlement due to the Favona Mine development.



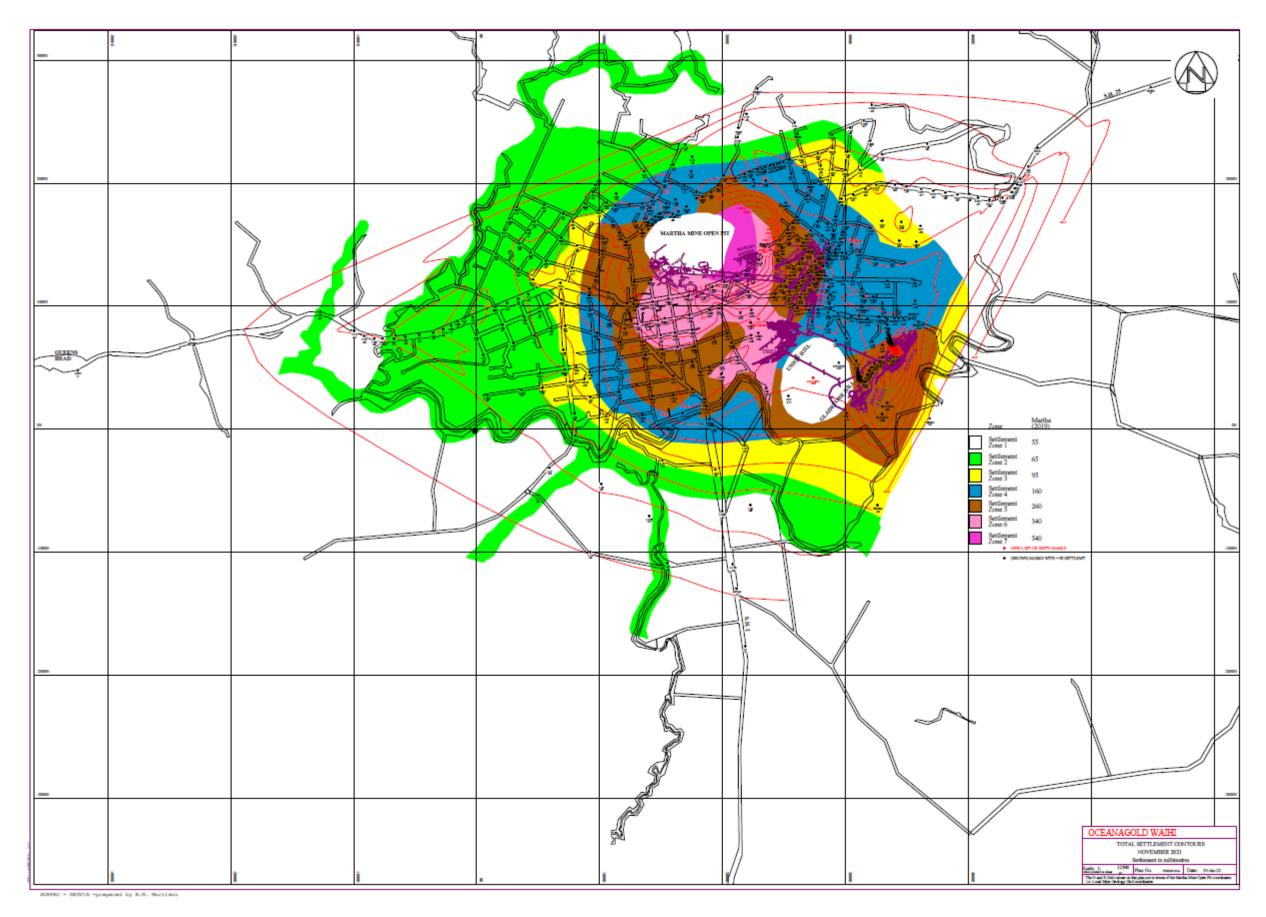



Figure 30: Total Settlement Contours Nov 2021



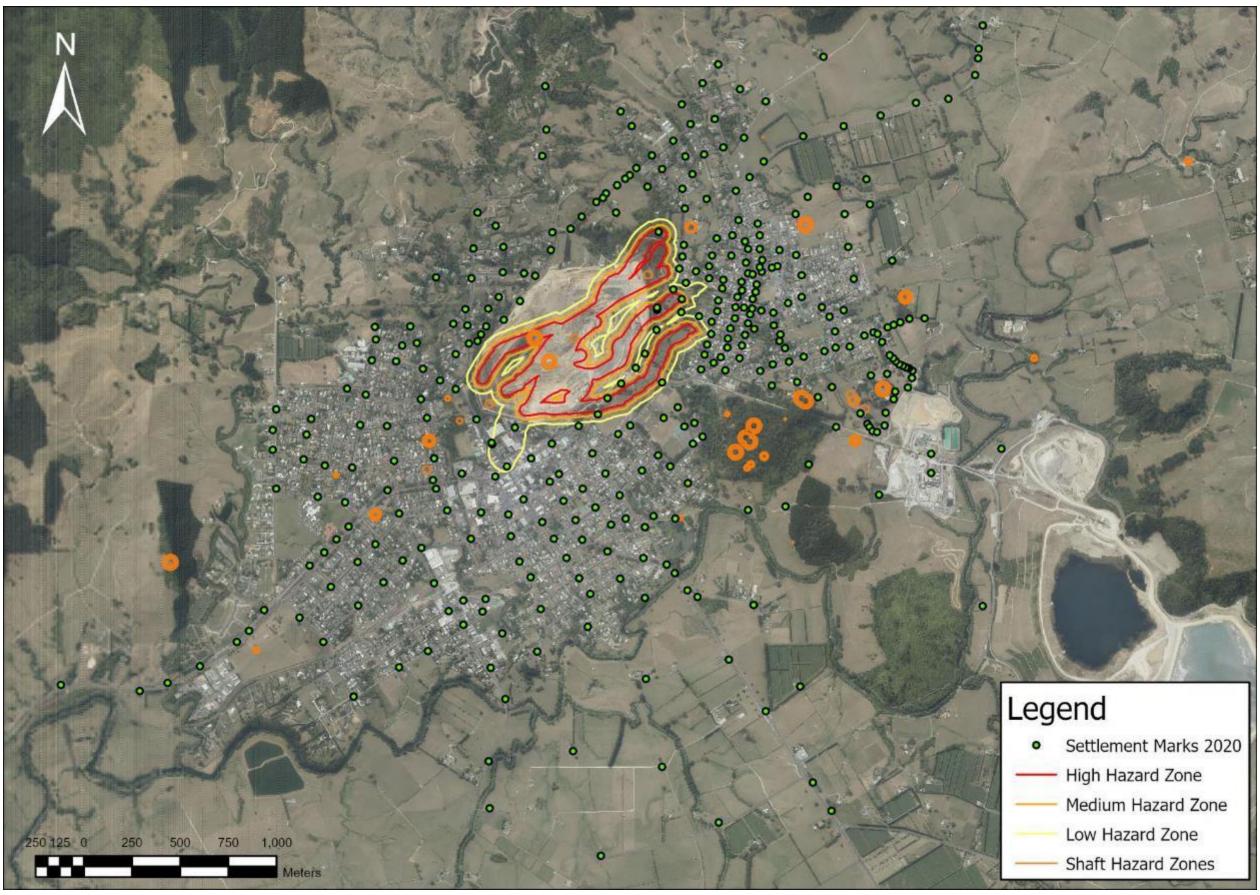



Figure 31: Settlement Marker Location Plan & Hazard Zones



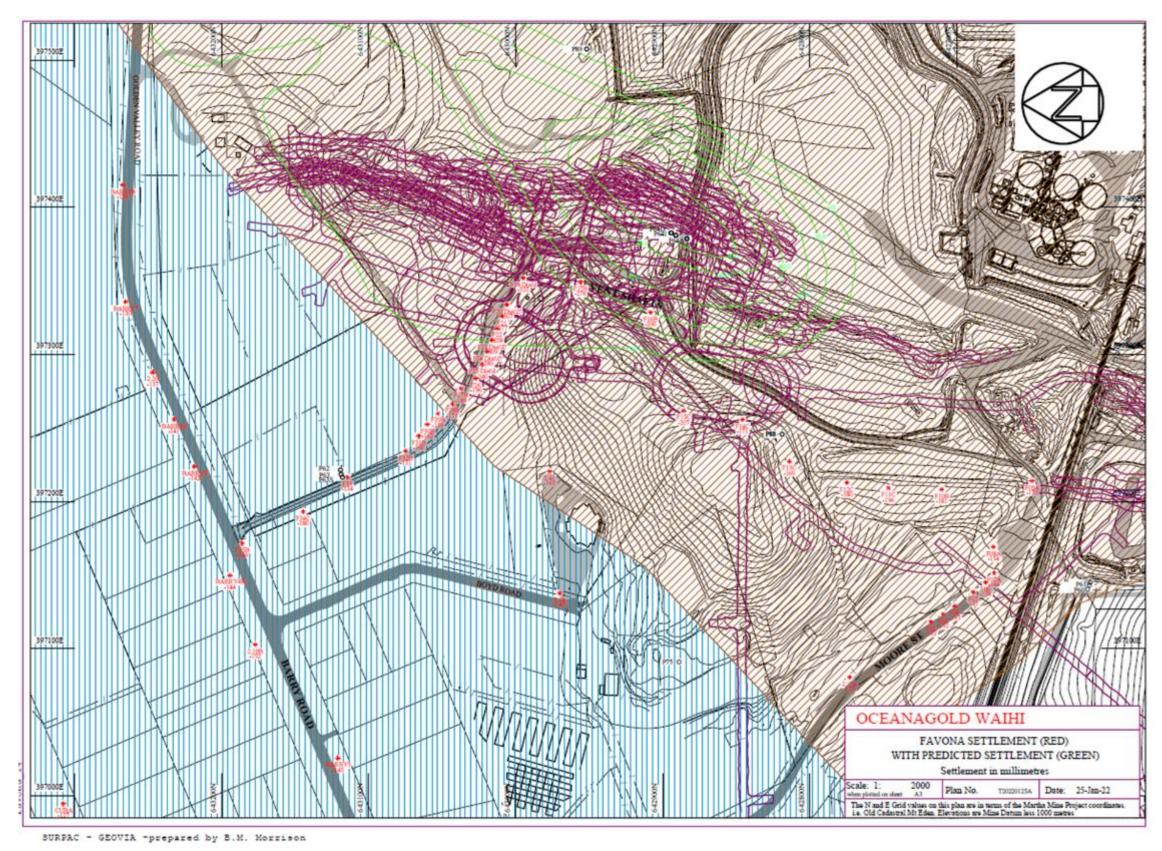



Figure 32: Favona Settlement Nov 2021





Figure 33: Triggered settlement marks Nov 2021



### 6.2 Results

Appendix C presents plans showing settlement marks, settlement values and settlement contours.

Time-history plots of settlement survey data for each zone are presented in Appendix D. The plots also depict the zone settlement predictions (for the Martha Extended Project, Trio Development, Correnso Project and Project Martha) shown as horizontal lines on each set of graphs.

The projected trends and the maximum settlements are provided on the graphs in Appendix D. Key trends are described below.

97% (392/403) of the marks did not exceed the settlement trigger levels; 11 marks were triggered. This number is similar to 2020. Figure 33 displays the seven settlement marks from the November 2021 survey outside the influence of the Favona Underground that exceeded the trigger limits. The other four marks that exceeded the trigger limits are located above the Favona Underground.

Some points in the time-history plots of settlement in Appendix D for May 2021 show greater settlement compared to the general trends. This is due to a larger than normal survey mis-close associated with the change to new survey staff in May 2021. This is generally most notable to the north and east extents of the survey. The reason for this larger than normal mis-close was able to be identified and corrected for the November 2021 survey. The November 2021 results follow the general settlement trends prior to the May 2021 survey. The May 2021 survey data can be reprocessed to remove the May 2021 mis-close. This reprocessing will be done for future reports.

### 6.2.1 ZONE 1 - Trigger 55mm

The Zone 1 time-history plot (Appendix D) shows three groupings, one showing a small but steady ongoing settlement after about 1999), another with little settlement until November 2015 and then a small ongoing settlement and another group with no settlement evident. To show these observations the marks for Zone 1 were re-plotted as groups namely:

- Zone 1 along Waihi Whangamata Road has had a small steady ongoing settlement since 1999 which has reached between 15 and 40 mm (Figure 34)
- Zone 1 south of Waihi has had a small steady ongoing settlement since 1999 which has reached between 15 and 50 mm (Figure 35)
- Zone 1 west of Waihi has had a very small amount of settlement (less than 12 mm) up to 2015 following which the settlement rate increased to a small steady ongoing settlement which has reached between 10 to 20 mm (Figure 36)
- Zone 1 north of Waihi which has had no measurable settlement (Figure 37)

This grouping shows that the marks in Zone 1 with a slow ongoing settlement trend are located along Waihi Whangamata Road to the east of Waihi and to the south of Waihi. A steady increase in settlement rate from about 1999 is also be observed in most marks in Zones 2 to 6, suggesting that there is a small and widespread effect occurring at depth. Two of the three settlement marks in Zone 1 to the west show little settlement until 2015 and then a small steady on-going settlement showing the widespread effects at depth have reached these markers (Figure 37).

These observations suggest the following:

• The widespread 10 to 50 mm settlement observed from about 1999 at many Zone 1 marks and also the increasing settlement in Zones 2 to 6 marks is a response to the ongoing dewatering of the deeper structures in the andesite rock body (fracture depressurisation) as a result of mine dewatering. This is a broad effect and has negligible influence on differential tilt between marks.

Doc ref: WAI-200-REP-007-004



The stable water levels in the wells monitoring the deeper younger volcanic materials and the upper andesite layers (Figure 14) indicate that the observed settlement behaviour is not related to on-going consolidation of these materials at these locations as no on-going dewatering is evident at these locations.



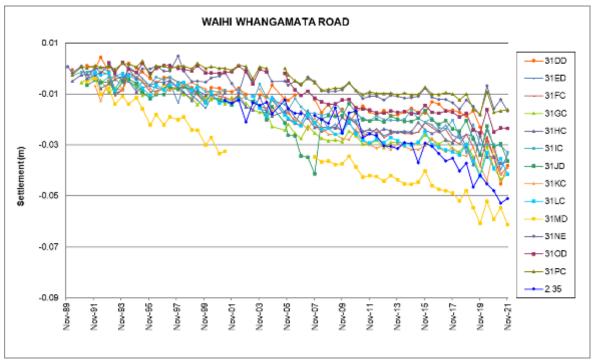



Figure 34: Zone 1 Waihi Whangamata Road

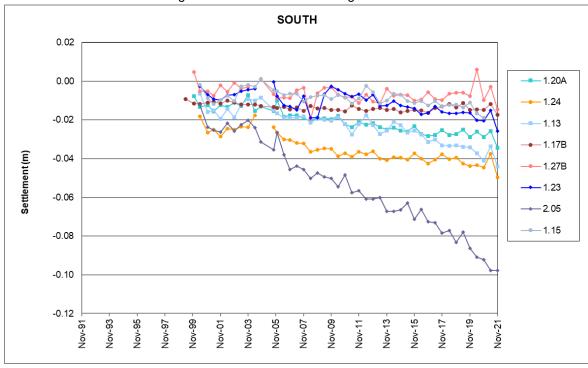



Figure 35: Zone 1 Waihi South



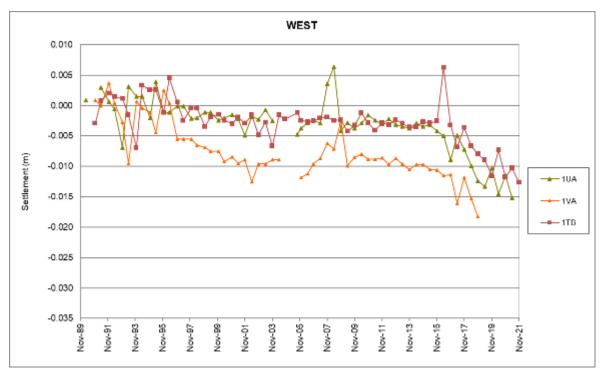



Figure 36: Zone 1 West of Waihi

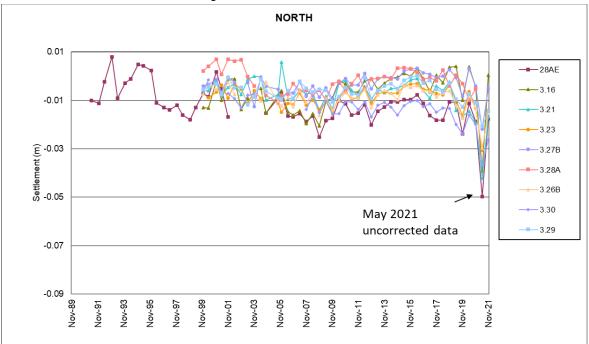



Figure 37: Zone 1 North of Waihi

Results exceeding the trigger levels shown on the Zone 1 time – history plot are discussed below.

Three marks in Zone 1 showed settlement greater than the trigger levels: 31MD, 2.05 and 2.44

Mark 31MD is located along the Waihi to Whangamata Road and showed a period of greater settlement than nearby marks during the early 1990s. More recent recorded ongoing settlement is similar to nearby marks. This mark may be influenced by its proximity to the banks of the Ohinemuri River (Figure 33).

Mark 2.05 is near Winner Hill and was included in Zone 1 because it was an andesite outcrop. Dewatering of the andesite was originally thought to contribute less to settlements. Like other marks

Doc ref: WAI-200-REP-007-004



to the south of Waihi Mark 2.05 indicates ongoing settlement after 2003 due to deeper and more extensive dewatering of the andesite. Mark 2.05 is more representative of Zone 4 settlements.

Mark 2.44 has been investigated in the past and the cause has been attributed to some localised surficial slope movement. This mark is listed as disturbed by the surveyor.



### 6.2.2 ZONE 2 - Trigger 65mm

This zone encompasses the western outskirts of Waihi township and some marks to the north and south of Waihi. The time-history plot for Zone 2 (Appendix D) shows all but one of the Zone 2 marks to be tracking less than the settlement trigger level. As with Zone 1 most of the marks have small settlements. Total settlements to date are generally between 10 to 65 mm with settlements of between 10 to 40 mm since 1999. Movements exceeding trigger levels are discussed below

Mark 1.12 exceeds the Zone 2 trigger level by 4mm. On review the settlements at this mark, Mark 1.04, Mark 1.02D, and Mark 1.03D in Zone 2 in this area of town, the settlement rate increased in 2020. This is likely associated with the ongoing dewatering for MUG and likely shows effect the deep dewatering in the andesite is having. The piezometer borehole P4 in the south area of Waihi indicates the overlying younger volcanics have not been dewatered. The settlements are relatively small and with negligible tilt and are not of concern. Mark 1.12 will continue to be reviewed with subsequent monitoring surveys where over the trigger level of 65mm.

### 6.2.3 ZONE 3 - Trigger 95mm

This zone includes areas to the east, south and west of Waihi town.

Inspection of the time-history plot for Zone 3 shows, as with Zones 1 and 2, most marks display ongoing steady settlement. The measured total settlements are small and generally between 20 to 90 mm with settlements since 1999 of between about 10 to 50 mm. Tilts between adjacent marks are well within acceptable limits.

One mark (2CE) has moved more than the settlement trigger level for the zone. Mark 2CE is located to the west of Waihi township and has showed an increased rate of settlement compared to nearby marks between 1991 and 1995. Thereafter, it has settled at a similar rate to nearby marks. This settlement pattern is similar to point 2BC in Zone 5. This increase settlement rate in the early 1990's is associated with dewatering/depressurisation effects due to the development of Martha Pit. Steady ongoing settlements similar to the surrounding points indicates settlement associated with dewatering of the deeper andesite. This mark will continue to be reviewed however settlements are explainable and tilts are small, so not of concern.

### 6.2.4 ZONE 4 - Trigger 160mm

Zone 4 time-history plots (Appendix D) show relatively steady ongoing settlement since 1995 in response to dewatering effects. The measured total settlements are relatively small and generally between 20 to 140 mm. Settlements since 1999 are generally between 10 to 80 mm. Tilts between adjacent marks are well within acceptable limits.

One mark, 23C, exceeded the predicted maximum settlement for this zone in May 2021. This mark showed a sharp increase in settlement in the May 2020 survey. The settlement in the subsequent November 2020 survey was similar to nearby marks. This mark is located near a drain and may have been affected by the dry summer and autumn during 2019/2020 or been influenced by recent drainage works nearby. No effects on surrounding land are visible, and nearby piezometers have not shown any unusual changes.

### 6.2.5 ZONE 5 - Trigger 260mm

The data for the Zone 5 marks are provided in the time-history plot in Appendix D. Marks show a steady increase in settlement with time and total settlements are generally between 30 and 150 mm. Settlements since 1999 are generally between 15 to 85 mm. No marks in Zone 5, outside of the area over Favona Underground, exceeded the predicted maximum settlement for the zone.



### 6.2.6 ZONE 6 - Trigger 340mm

The settlement in this zone is shown on the Zone 6 time-history plot in Appendix D. This zone extends through the centre of the Waihi commercial area. Marks show steady ongoing settlement with time and total settlements are generally between 70 to 280 mm. Settlements since 1999 are generally between 50 to 190 mm. One mark in this zone exceeded the maximum predicted settlement for the zone. This mark (mark BM20) has been noted as disturbed by the surveyor (Appendix B), however the settlement has been accumulated at a relatively constant rate. The larger settlements at BM20 (compared to the rest of Zone 6) are likely due to the local ground conditions and there is no private property in this area. This point will continue to be monitored and reviewed.

### 6.2.7 ZONE 7 - Trigger 540mm

Zone 7 settlements are all within the predicted maximum settlement (Zone 7 time-history plot, Appendix D). Total settlements are about 290 mm. Settlements since 1999 are about 160 mm. Ongoing settlements are relatively constant matching the ongoing dewatering at depth in the andesite. No new trends are indicated.

#### 6.3 Favona Settlement

Settlement in the vicinity of the Favona Mine has a component of settlement due to Martha Mine dewatering as well as settlement related to Favona Mine dewatering.

A separation of total settlement into Martha and Favona settlement components has been undertaken by projecting the settlement evident before the commencement of the Favona Mine and accepting these projected settlements as Martha settlements. The difference between the projected (Martha) settlement and total measured settlement has been taken as the Favona component of settlement. Table 8 sets out the total settlement, the settlement attributed to Martha dewatering and the settlement attributed to Favona Mine dewatering as assessed for the Favona Mine settlement markers.



Table 8 - Separation of Settlement – Favona Marks (Nov 2021)

| Mark | Total Settlement (mm) | Martha Settlement (mm) | Favona Settlement (mm) |
|------|-----------------------|------------------------|------------------------|
| F02  | 103                   | 50                     | 53                     |
| F03  | 106                   | 46                     | 60                     |
| F04  | 108                   | 44                     | 64                     |
| F05  | 110                   | 46                     | 64                     |
| F06  | 110                   | 40                     | 70                     |
| F07* | 112                   | 42                     | 70                     |
| F08A | 121                   | 44                     | 77                     |
| F09A | 124                   | 38                     | 86                     |
| F10B | 131                   | 44                     | 87                     |
| F11C | 157                   | 42                     | 115                    |
| F12C | 134                   | 39                     | 95                     |
| F13C | 131                   | 55                     | 76                     |
| F14C | 131                   | 60                     | 71                     |
| F15C | 167                   | 55                     | 112                    |
| F16B | 163                   | 55                     | 108                    |
| F17B | 280                   | 55                     | 225                    |
| F18  | 354                   | 49                     | 305                    |
| F20  | 303                   | 44                     | 259                    |
| F21  | 274                   | 43                     | 231                    |
| F22  | 255                   | 42                     | 213                    |
| F23  | 235                   | 49                     | 186                    |
| F24  | 220                   | 42                     | 178                    |
| F25  | 214                   | 49                     | 165                    |
| F26  | 192                   | 45                     | 147                    |
| F27B | 178                   | 50                     | 128                    |
| F28B | 168                   | 49                     | 119                    |
| F29B | 157                   | 48                     | 109                    |
| F30B | 156                   | 52                     | 104                    |
| F31B | 140                   | 55                     | 85                     |
| F32B | 126                   | 49                     | 77                     |
| F33  | 115                   | 52                     | 63                     |
| F34C | 115                   | 58                     | 57                     |
| F35B | 106                   | 61                     | 45                     |

<sup>\*</sup> Disturbed by 40+mm

The largest settlement at Favona Mine occurs where the markers overlie mine workings (marks F16B to F26). The maximum predicted settlement over the workings from dewatering was assessed as 80 mm for earlier projects, with mine dewatering related settlement not extending into the urbanised area. The actual total settlement and the extent of settlement exceeded the predictions for the dewatering settlement. The difference between the predictions and measured settlement was considered to reflect depressurisation and consolidation of the andesite rock body, which was not considered in the initial predictions. Andesite rock was considered to be a stiff material with negligible consolidation characteristics, but the long-term settlement observed in response to Martha Mine dewatering (in Zones 1 to 6, discussed above) suggests that some minor consolidation of the deeper andesite rock is occurring, possibly as a response to fracture depressurisation. In addition, some further relaxation of the rockmass towards the mine workings may be occurring, and this may be providing further volume reduction of the andesite rockmass in the vicinity of the mine.

Another potential influence is that the Favona andesite has been undergoing primary consolidation, as current water level monitoring data suggests that the Favona system was not dewatered to the



same extent as the Martha groundwater system during historical mining in the early 1900's. Consolidation predictions for Favona were made based on Martha's second dewatering consolidation data. The amount of primary consolidation is greater for the first time of dewatering compared to the second or subsequent times of dewatering. This is because the first cycle of dewatering results in preconsolidation and an increase in the stiffness of the ground, and subsequent re-watering does not result in full rebound of levels to their original levels.

Settlement predictions for Project Martha have been updated for the zone encompassing Favona marks to reflect the effects outlined above. Four Favona marks exceeded the maximum predicted settlement in the November 2021 survey: F17B, F18, F20 and F21. All are located above underground workings, on company owned land. Marks F18 and F20 are noted by the surveyor as being disturbed (Figure 32, Appendix B**Error! Reference source not found.**).

### 6.4 Trio Underground

The only anomalous result in the vicinity of Trio Underground has been apparent settlement at mark 2.44 (located on a farm track between Union and Black Hill) with pronounced acceleration since the May 2010 survey. This was investigated and determined to be related to a shallow, likely pre-existing surficial landslide. It is now noted by the surveyor as being disturbed. The mark will continue to be monitored on a biennial basis as per other survey marks but will not be included in any settlement profiling.

#### 6.5 Summary

The analysis of the data to the end of 2021 continues to indicate that current slow settlements associated with Martha Mine are likely to be related to dewatering of the deeper structures within the andesite rock mass. Groundwater monitoring data does not show any widespread or significant ongoing dewatering of alluvium, younger volcanic materials or the upper layers of the andesite rock body.

Settlement triggers include modification to Martha Mine Extended pit associated with the cutback projects; the extended duration of dewatering at Martha Mine; assumptions made in the Favona settlement predictions (fracture depressurisation, secondary rather than primary consolidation); and localised natural, induced and historic effects.

The area around Martha Mine of greatest settlement is adjacent to the eastern pit wall where the weaker younger volcanic rocks are thickest and dewatering of this geological unit is greatest. This is also an area that has historic underground workings that have not been backfilled.

The main area of settlement at Favona overlies the workings, is directly under farmland and within the area of Company owned land. Outside the Favona workings area, settlement is notably lower. The conditions giving rise to settlement at Favona differ from those in the Martha Groundwater System as the latter has been dewatered to a greater extent for a longer time than the current dewatering while the former has not been previously dewatered. While settlement has exceeded initial estimates at Favona, those estimates were based on Martha settlement data which was responding to reconsolidation rather than primary consolidation.

In relation to Trio, Correnso and SUPA mines, these are located in the dewatered Martha Groundwater System and settlement as described in this document has already been developing in those areas in response to Martha Mine dewatering. Also, as these are linked to the Martha system, settlement will be based on additional consolidation and did not include settlement due to dewatering of the andesites.



# 7 TILT

As noted earlier, a full review of the Waihi settlement marker network and database was undertaken by GWS Limited in 2019. The review resulted in the removal of erroneous and high-density settlement marks and an updated settlement database with revised settlement marker corrections where appropriate. Marks proposed for removal have been included in tilt calculations until their removal is approved by Hauraki District and Waikato Regional Councils. Revised settlement marker corrections have been applied in this reporting period.

Assessments have been grouped into five areas: Favona, Martha (incl. North Wall), Correnso, Correnso South and SUPA. There is some crossover of marks between Mining Permit boundaries. The assessment of tilt between adjacent settlement marks is summarised in Table 9.

Table 9: Tilt Calculations November 2021 Survey

|      |   |   | Distance | Nov 2021 |     |        | Tilt  |
|------|---|---|----------|----------|-----|--------|-------|
| Mark | x | у | (m)      | (m)      | Abs | Δh (m) | (1:X) |

#### Favona

| F02  | 3097.60 | 490.00 |       | -0.1029 | 0.1029 |        |       |
|------|---------|--------|-------|---------|--------|--------|-------|
| F06  | 3126.97 | 430.49 | 66.36 | -0.1099 | 0.1099 | 0.0070 | 6510  |
| F10B | 3176.88 | 446.75 | 52.49 | -0.1315 | 0.1315 | 0.0216 | 3232  |
| F12C | 3207.32 | 503.82 | 64.69 | -0.1344 | 0.1344 | 0.0029 | 22374 |
| F14C | 3275.29 | 551.31 | 82.91 | -0.1310 | 0.1310 | 0.0034 | 24632 |
| F15C | 3297.17 | 585.32 | 40.44 | -0.1672 | 0.1672 | 0.0362 | 1117  |
| F16B | 3367.38 | 578.70 | 70.52 | -0.1627 | 0.1627 | 0.0045 | 15596 |
| F17B | 3405.48 | 613.91 | 51.88 | -0.2804 | 0.2804 | 0.1177 | 441   |
| F18  | 3423.83 | 648.30 | 38.98 | -0.3543 | 0.3543 | 0.0738 | 528   |
| F21  | 3405.99 | 672.00 | 29.66 | -0.2742 | 0.2742 | 0.0801 | 370   |
| F24  | 3388.13 | 690.85 | 25.97 | -0.2199 | 0.2199 | 0.0542 | 479   |
| F32B | 3348.78 | 769.10 | 87.59 | -0.1265 | 0.1265 | 0.0935 | 937   |
| F34C | 3339.49 | 849.57 | 81.00 | -0.1146 | 0.1146 | 0.0118 | 6838  |
| F35B | 3336.68 | 896.06 | 46.58 | -0.1060 | 0.1060 | 0.0086 | 5416  |

### Martha

| 20BB  | 2533.26 | 1622.29 |        | -0.1217 | 0.1217 |        |        |
|-------|---------|---------|--------|---------|--------|--------|--------|
| 20AC  | 2461.04 | 1536.91 | 111.83 | -0.1255 | 0.1255 | 0.0039 | 28886  |
| BM20A | 2345.50 | 1484.90 | 126.71 | -0.2421 | 0.2421 | 0.1165 | 1087   |
| 20D   | 2482.07 | 1473.48 | 137.05 | -0.1506 | 0.1506 | 0.0914 | 1499   |
| 19CB  | 2296.71 | 1381.40 | 206.97 | -0.2843 | 0.2843 | 0.1337 | 1548   |
| 19BB  | 2191.56 | 1292.02 | 138.00 | -0.2972 | 0.2972 | 0.0129 | 10702  |
| BM19B | 2117.17 | 1244.36 | 88.35  | -0.2975 | 0.2975 | 0.0002 | 372363 |
| 17CB  | 2014.23 | 1201.01 | 111.70 | -0.3004 | 0.3004 | 0.0029 | 38434  |
| 17BB  | 1919.52 | 1160.79 | 102.90 | -0.2181 | 0.2181 | 0.0823 | 1251   |
| 17AB  | 1841.32 | 1104.80 | 96.18  | -0.1898 | 0.1898 | 0.0283 | 3398   |
| BM17A | 1724.44 | 1088.92 | 117.95 | -0.0992 | 0.0992 | 0.0906 | 1302   |

# **North Wall**

| 27AB | 2009.08 | 2064.33 |        | -0.0101 | 0.0101 |        |      |
|------|---------|---------|--------|---------|--------|--------|------|
| 26Q  | 1963.00 | 1982.71 | 93.73  | -0.0339 | 0.0339 | 0.0237 | 3948 |
| 26PB | 1834.84 | 1893.11 | 156.38 | -0.0503 | 0.0503 | 0.0164 | 9529 |
| 26OB | 1706.93 | 1812.27 | 151.31 | -0.0042 | 0.0042 | 0.0461 | 3285 |

Doc ref: WAI-200-REP-007-004



| 26NC | 1641.16 | 1772.40 | 228.22 | -0.0435 | 0.0435 | 0.0393 | 5810  |
|------|---------|---------|--------|---------|--------|--------|-------|
| 26MB | 1593.46 | 1750.66 | 122.11 | -0.0449 | 0.0449 | 0.0133 | 9174  |
| 26JB | 1495.71 | 1756.55 | 93.74  | -0.0387 | 0.0387 | 0.0045 | 20949 |
| BM26 | 1542.45 | 1837.81 | 100.98 | -0.0342 | 0.0342 | 0.0107 | 9447  |
| 3.09 | 1618.51 | 1870.17 | 217.54 | -0.0316 | 0.0316 | 0.0274 | 7935  |

# Correnso

| 25E   | 2472.35 | 1162.01 |       | -0.1572 | 0.1572 |        |        |
|-------|---------|---------|-------|---------|--------|--------|--------|
| 25B   | 2497.67 | 1105.83 | 61.63 | -0.1337 | 0.1337 | 0.0235 | 2619   |
| 251   | 2537.20 | 1045.04 | 72.51 | -0.1214 | 0.1214 | 0.0123 | 5890   |
| 24H   | 2630.70 | 1072.28 | 97.39 | -0.1096 | 0.1096 | 0.0118 | 8266   |
| 24B   | 2667.67 | 1126.40 | 65.54 | -0.1134 | 0.1134 | 0.0038 | 17453  |
| 24G   | 2705.96 | 1170.46 | 58.38 | -0.1238 | 0.1238 | 0.0104 | 5602   |
| 24L   | 2761.67 | 1181.33 | 56.76 | -0.1256 | 0.1256 | 0.0018 | 31210  |
| 24AC  | 2743.58 | 1218.90 | 41.70 | -0.1280 | 0.1280 | 0.0024 | 17440  |
| 24F   | 2772.80 | 1257.27 | 48.23 | -0.1219 | 0.1219 | 0.0061 | 7874   |
| BM24  | 2794.55 | 1279.36 | 31.00 | -0.1128 | 0.1128 | 0.0091 | 3413   |
| 24E   | 2758.43 | 1303.23 | 43.29 | -0.1185 | 0.1185 | 0.0057 | 7564   |
| 24DC  | 2718.29 | 1323.13 | 44.80 | -0.1184 | 0.1184 | 0.0001 | 401372 |
| 241   | 2692.57 | 1269.71 | 59.29 | -0.1313 | 0.1313 | 0.0129 | 4583   |
| 25H   | 2648.48 | 1232.96 | 57.40 | -0.1347 | 0.1347 | 0.0033 | 17175  |
| 25CB  | 2615.91 | 1190.50 | 53.51 | -0.1346 | 0.1346 | 0.0001 | 632001 |
| 25G   | 2594.60 | 1149.42 | 46.28 | -0.1354 | 0.1354 | 0.0008 | 60071  |
| 25F   | 2542.53 | 1116.24 | 61.74 | -0.1376 | 0.1376 | 0.0023 | 27346  |
| 25B   | 2497.67 | 1105.83 | 46.06 | -0.1337 | 0.1337 | 0.0039 | 11751  |
| BM25  | 2424.91 | 1100.25 | 72.97 | -0.1469 | 0.1469 | 0.0132 | 5531   |
| 25E   | 2472.35 | 1162.01 | 77.88 | -0.1572 | 0.1572 | 0.0103 | 7532   |
| 25A   | 2505.13 | 1203.77 | 53.09 | -0.1552 | 0.1552 | 0.0021 | 25590  |
| 25D   | 2547.05 | 1248.02 | 60.95 | -0.1565 | 0.1565 | 0.0014 | 44038  |
| 21DC  | 2573.96 | 1304.15 | 62.25 | -0.1456 | 0.1456 | 0.0109 | 5713   |
| 21N   | 2623.25 | 1342.44 | 62.41 | -0.1109 | 0.1109 | 0.0348 | 1796   |
| 21C   | 2651.57 | 1389.82 | 55.20 | -0.1182 | 0.1182 | 0.0073 | 7583   |
| 21M   | 2694.90 | 1439.65 | 66.03 | -0.1058 | 0.1058 | 0.0124 | 5335   |
| 21BC  | 2719.27 | 1477.80 | 45.27 | -0.0910 | 0.0910 | 0.0148 | 3061   |
| 21EB  | 2799.95 | 1429.09 | 94.24 | -0.0934 | 0.0934 | 0.0024 | 39943  |
| 24K   | 2783.89 | 1387.72 | 44.38 | -0.1095 | 0.1095 | 0.0161 | 2753   |
| 24J   | 2749.39 | 1365.76 | 40.89 | -0.0848 | 0.0848 | 0.0247 | 1657   |
| 24DC  | 2718.29 | 1323.13 | 52.77 | -0.1184 | 0.1184 | 0.0336 | 1571   |
| 22F   | 2815.91 | 1325.41 | 97.65 | -0.1175 | 0.1175 | 0.0009 | 104892 |
| 22C   | 2846.39 | 1352.54 | 40.80 | -0.1350 | 0.1350 | 0.0176 | 2322   |
| 22GB  | 2862.88 | 1387.97 | 39.08 | -0.1079 | 0.1079 | 0.0272 | 1438   |
| 22BC  | 2916.75 | 1435.77 | 72.02 | -0.0940 | 0.0940 | 0.0139 | 5177   |
| 221   | 2918.98 | 1461.37 | 25.69 | -0.0923 | 0.0923 | 0.0017 | 15351  |
| 22H   | 2869.25 | 1441.80 | 53.44 | -0.0811 | 0.0811 | 0.0112 | 4769   |
| 21P   | 2849.17 | 1456.90 | 25.13 | -0.0839 | 0.0839 | 0.0028 | 8819   |
| 21FB  | 2861.65 | 1512.21 | 56.70 | -0.0657 | 0.0657 | 0.0182 | 3110   |
| 21Q   | 2899.60 | 1571.32 | 70.24 | -0.0672 | 0.0672 | 0.0015 | 47393  |
| 21GC  | 2901.12 | 1614.05 | 42.76 | -0.0699 | 0.0699 | 0.0027 | 15899  |
| 22KB  | 2985.12 | 1610.91 | 84.06 | -0.0594 | 0.0594 | 0.0105 | 8002   |
| 2.29B | 2955.27 | 1547.42 | 70.16 | -0.0860 | 0.0860 | 0.0267 | 2630   |
| 22J   | 2944.47 | 1489.76 | 58.66 | -0.0740 | 0.0740 | 0.0120 | 4892   |
| 221   | 2918.98 | 1461.37 | 38.16 | -0.0923 | 0.0923 | 0.0182 | 2092   |
| 22H   | 2869.25 | 1441.80 | 53.44 | -0.0811 | 0.0811 | 0.0112 | 4769   |



| 21EB | 2799.95 | 1429.09 | 70.46  | -0.0934 | 0.0934 | 0.0123 | 5730  |
|------|---------|---------|--------|---------|--------|--------|-------|
| 21BC | 2719.27 | 1477.80 | 94.24  | -0.0910 | 0.0910 | 0.0024 | 39943 |
| BM21 | 2654.80 | 1515.40 | 74.63  | -0.0987 | 0.0987 | 0.0077 | 9660  |
| 20F  | 2605.79 | 1575.98 | 77.92  | -0.1077 | 0.1077 | 0.0090 | 8645  |
| 20E  | 2535.65 | 1542.67 | 77.65  | -0.1656 | 0.1656 | 0.0578 | 1342  |
| 21C  | 2651.57 | 1389.82 | 191.84 | -0.1182 | 0.1182 | 0.0474 | 4045  |

# **Correnso South**

| 23F      | 2700.77 | 968.79  |        | -0.1161 | 0.1161 |        |       |
|----------|---------|---------|--------|---------|--------|--------|-------|
| 2.13     | 2725.42 | 874.95  | 97.03  | -0.1075 | 0.1075 | 0.0086 | 11250 |
| 23E      | 2774.82 | 972.51  | 74.14  | -0.1195 | 0.1195 | 0.0034 | 21492 |
| 2.14A    | 2853.28 | 838.67  | 132.91 | -0.1168 | 0.1168 | 0.0093 | 14253 |
| 23B      | 2856.49 | 949.79  | 84.77  | -0.1211 | 0.1211 | 0.0016 | 54321 |
| BANK1    | 2866.21 | 1023.25 | 74.10  | -0.1066 | 0.1066 | 0.0145 | 5122  |
| 23C      | 2856.14 | 1068.01 | 45.88  | -0.1688 | 0.1688 | 0.0622 | 738   |
| 2.25     | 2874.51 | 1097.26 | 34.54  | -0.1141 | 0.1141 | 0.0547 | 632   |
| 23D      | 2861.42 | 1154.89 | 59.09  | -0.1196 | 0.1196 | 0.0055 | 10711 |
| 2.24     | 2885.91 | 1215.47 | 65.35  | -0.1230 | 0.1230 | 0.0034 | 19298 |
| MATAURA1 | 2831.84 | 1250.81 | 64.60  | -0.1106 | 0.1106 | 0.0124 | 5227  |
| BM24     | 2794.55 | 1279.36 | 46.96  | -0.1128 | 0.1128 | 0.0021 | 21893 |

# **SUPA**

|       |         |         | Distance | Nov 2021 |        |        | Tilt  |
|-------|---------|---------|----------|----------|--------|--------|-------|
| Mark  | X       | У       | (m)      | (m)      | Abs    | Δh (m) | (1:X) |
| BM25  | 2424.91 | 1100.25 |          | -0.1469  | 0.1469 |        |       |
| 34H   | 2233.59 | 970.56  | 231.13   | -0.1274  | 0.1274 | 0.0195 | 11841 |
| 2.10  | 2143.92 | 950.39  | 91.91    | -0.1432  | 0.1432 | 0.0158 | 5800  |
| 34C   | 1968.90 | 982.67  | 177.97   | -0.1146  | 0.1146 | 0.0286 | 6228  |
| 34GC  | 2211.33 | 1119.52 | 278.39   | -0.2074  | 0.2074 | 0.0927 | 3002  |
| 19BB  | 2191.56 | 1292.02 | 173.63   | -0.2972  | 0.2972 | 0.0898 | 1933  |
| 19CB  | 2296.71 | 1381.40 | 138.00   | -0.2843  | 0.2843 | 0.0129 | 10702 |
| 210   | 2527.37 | 1356.34 | 232.01   | -0.1497  | 0.1497 | 0.1346 | 1724  |
| 20C   | 2450.61 | 1413.86 | 95.92    | -0.1734  | 0.1734 | 0.0237 | 4049  |
| 20D   | 2482.07 | 1473.48 | 67.41    | -0.1506  | 0.1506 | 0.0228 | 2962  |
| BM20A | 2345.50 | 1484.90 | 137.05   | -0.2421  | 0.2421 | 0.0914 | 1499  |



# 7.1 Favona

Locations surveyed in 2021 with tilt values steeper than the 1:1000 criterion between adjacent marks are listed in Table 9. The locations of the marks in relation to the Favona mine workings are shown in Figure 38 and Figure 39.



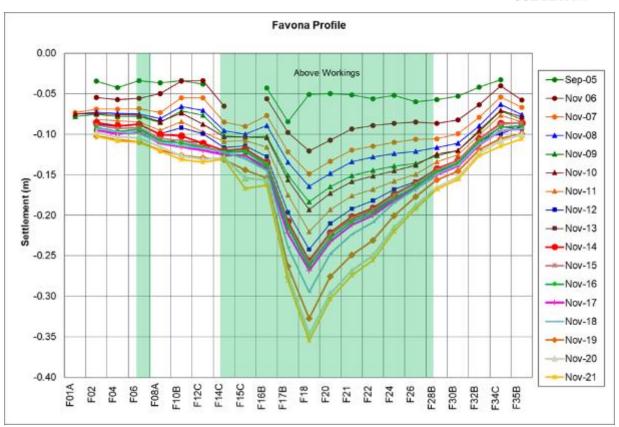



Figure 38: Favona Settlement Profile



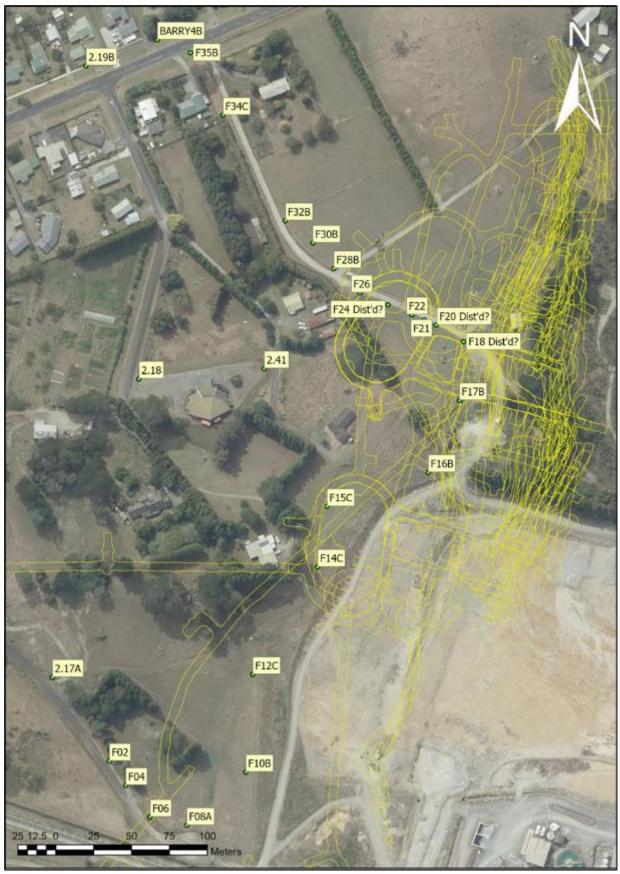



Figure 39: Favona Settlement marks and workings



### **Discussion**

#### **Favona Tilt**

The results for Favona indicate no new trends compared with recent surveys. No new tilt measurements in excess of 1:1000 has been recorded since the November 2020 survey.

All Favona marks showed more settlement than the November 2020 survey, continuing the trend of slow settlement over time at this location.

Tilt calculations greater than 1:1000 were determined in five locations (F16B/F17B, F17B/F18, F18/F21, F21/F24 and F24/26). These are all located over or near underground workings. Tilt in this area has changed little since 2005, with small increases in tilt as the dewatered underground workings adjust compared to the adjacent land. These locations are on farmland owned by the company; are over 100m south of any non-company residences; and are not considered to be an issue. Monitoring will continue, and this will determine any anomalous results that need to be addressed.

Note 1: The Favona tilt calculation is calculated from the total settlement at each mark, without separation of any Martha effect. While the calculated tilt may not precisely reflect the tilt due to Favona alone, the discrepancy is considered to be minor.

Note 2: Not all Favona settlement markers are included in tilt calculations due to some being too close to one another for accurate tilt calculations. The minimum distance between marks included in tilt calculation is 25m.

### 7.2 Martha/North Wall Tilt

No tilt calculations greater than 1:1000 in the Martha/North Wall area have been identified during the November 2021 survey.

Although no tilts have been identified in Slevin Park, the area is swampy, historically infilled with poor material and with previous slumping/subsidence. Therefore, close monitoring of this area will continue. We understand that HDC is also undertaking regular monitoring of this area.

#### 7.3 Correnso

Two tilt calculations greater than 1:000 in the Correnso South area were identified during the May 2020 survey and remain in the November 2021 survey. The tilts are between marks 23C/2.25 and 23C/BANK1 (Figure 40). Both tilts are due to a sharp increase in settlement of mark 23C in the May 2020 survey. The rate of settlement recorded at 23C in subsequent survey events has been similar to nearby marks. The mark is noted by the surveyor as being near a watercourse. The mark may have been influenced by improved drainage nearby or may have been disturbed.





Figure 40: Correnso Tilts and Underground Workings

#### **7.4** SUPA

No tilts in the SUPA area have been identified.

# 7.5 Historic comparisons

Marks are compared with the three previous surveys to help assess any trends (Table 2). It should be noted that tilt assessments vary depending on the separation distance of the markers. If marks have little tilt, large numbers can sometimes be generated. Additionally, marks can be reviewed which can result in revised corrections. This will modify tilt calculations.

Historic comparisons for Favona marks have not been included prior to the May 2021 reporting period due to the large number of Favona marks which were removed from tilt calculations following the November 2020 survey event, as agreed by Hauraki District and Waikato Regional Councils.



| Mark | Tilt (1:X) | Tilt (1:X) | Tilt (1:X) | Tilt (1:X) |
|------|------------|------------|------------|------------|
|      | May 20     | Nov 20     | May 21     | Nov 21     |

### Favona

| F02  | N/A    | N/A   |
|------|--------|-------|
| F08A | 3222   | 6510  |
| F10B | 3595   | 3232  |
| F12C | 11757  | 22374 |
| F14C | 207249 | 24632 |
| F15C | 1268   | 1117  |
| F16B | 8104   | 15596 |
| F17B | 444    | 441   |
| F18  | 512    | 528   |
| F21  | 381    | 370   |
| F24  | 440    | 479   |
| F32B | 941    | 937   |
| F34C | 5745   | 6838  |
| F35B | 5250   | 5416  |

### Martha

| 20BB  | N/A    | N/A    | N/A    | N/A    |
|-------|--------|--------|--------|--------|
| 20AC  | 21927  | 30224  | 22366  | 28886  |
| BM20A | 1141   | 1107   | 1115   | 1087   |
| 20D   | 1719   | 1514   | 1543   | 1499   |
| 19CB  | 1715   | 1566   | 1581   | 1548   |
| 19BB  | 11405  | 10952  | 10534  | 10702  |
| BM19B | 157771 | 192068 | 552197 | 372363 |
| 17CB  | 88647  | 129878 | 47329  | 38434  |
| 17BB  | 1238   | 1247   | 1278   | 1251   |
| 17AB  | 3482   | 3348   | 3546   | 3398   |
| BM17A | 1330   | 1321   | 1352   | 1302   |

# **North Wall**

| 27AB | N/A    | N/A   | N/A   | N/A   |
|------|--------|-------|-------|-------|
| 26Q  | 3096   | 4028  | 3927  | 3948  |
| 26PB | 16121  | 8987  | 10784 | 9529  |
| 26OB | 3687   | 3365  | 3434  | 3285  |
| 26NC | 6589   | 6028  | 6472  | 5810  |
| 26MB | 244214 | 8307  | 6822  | 9174  |
| 26JB | 21305  | 12499 | 7102  | 20949 |
| BM26 | 59401  | 7768  | 5232  | 9447  |
| 3.09 | 5811   | 8750  | 11847 | 7935  |

# Correnso



|       | <b></b> | T      | 1      |        |
|-------|---------|--------|--------|--------|
| 25E   | N/A     | N/A    | N/A    | N/A    |
| 25B   | 2866    | 2611   | 2515   | 2619   |
| 251   | 7251    | 8057   | 4074   | 5890   |
| 24H   | 5774    | 9990   | 24348  | 8266   |
| 24B   | 27310   | 21143  | 19277  | 17453  |
| 24G   | 6018    | 6081   | 5780   | 5602   |
| 24L   | 94593   | 14553  | 6524   | 31210  |
| 24AC  | 16039   | 7868   | 9065   | 17440  |
| 24F   | 5742    | 7308   | 6184   | 7874   |
| BM24  | 3131    | 3131   | 3195   | 3413   |
| 24E   | 6560    | 6661   | 7338   | 7564   |
| 24DC  | 8297    | 4716   | 9143   | 401372 |
| 241   | 5646    | 5247   | 118573 | 4583   |
| 25H   | 30210   | 17937  | 3827   | 17175  |
| 25CB  | 38223   | 535124 | 89187  | 632001 |
| 25G   | 66119   | 33059  | 77139  | 60071  |
| 25F   | 22865   | 26842  | 34298  | 27346  |
| 25B   | 30704   | 13546  | 10012  | 11751  |
| BM25  | 6291    | 5571   | 5446   | 5531   |
| 25E   | 7866    | 7417   | 7016   | 7532   |
| 25A   | 21235   | 18960  | 26544  | 25590  |
| 25D   | 55409   | 87072  | 43536  | 44038  |
| 21DC  | 6766    | 4716   | 7074   | 5713   |
| 21N   | 7900    | 6179   | 2517   | 1796   |
| 21C   | 2875    | 3585   | 13464  | 7583   |
| 21M   | 5241    | 4026   | 7025   | 5335   |
| 21BC  | 3353    | 5204   | 2830   | 3061   |
| 21EB  | 10833   | 42838  | 34905  | 39943  |
| 24K   | 2295    | 2516   | 2635   | 2753   |
| 24J   | 6067    | 12240  | 3543   | 1657   |
| 24DC  | 6514    | 4754   | 2852   | 1571   |
| 22F   | 19260   | 13072  | 43018  | 104892 |
| 22C   | 2950    | 2808   | 2454   | 2322   |
| 22GB  | 1613    | 1528   | 1420   | 1438   |
| 22BC  | 3035    | 4842   | 5192   | 5177   |
| 221   | 32117   | 6761   | 64234  | 15351  |
| 22H   | 4729    | 6004   | 3685   | 4769   |
| 21P   | 3442    | 17949  | 2264   | 8819   |
| 21FB  | 3566    | 2392   | 2148   | 3110   |
| 21Q   | 702402  | 58534  | 63855  | 47393  |
| 21GC  | 8223    | 17817  | 17104  | 15899  |
| 22KB  | 12183   | 12009  | 7505   | 8002   |
| 2.29B | 3341    | 2497   | 2506   | 2630   |
| 22J   | 6240    | 5587   | 4769   | 4892   |
| 221   | 1696    | 2245   | 1758   | 2092   |
| 22H   | 3660    | 6004   | 3685   | 4769   |
| 21EB  | 5462    | 13549  | 5504   | 5730   |
| 21BC  | 10833   | 42838  | 34905  | 39943  |
| BM21  | 8885    | 8885   | 10512  | 9660   |
| ·     | 0000    | 0000   | 10012  | 0000   |



| 20F | 9082 | 9082 | 9189 | 8645 |
|-----|------|------|------|------|
| 20E | 1374 | 1409 | 1396 | 1342 |
| 21C | 4047 | 4082 | 4189 | 4045 |

#### **Correnso South**

| 23F      | N/A    | N/A    | N/A   | N/A   |
|----------|--------|--------|-------|-------|
| 2.13     | 6220   | 17143  | 9703  | 11250 |
| 23E      | 7452   | 27989  | 14685 | 21492 |
| 2.14A    | 221511 | 28893  | 19837 | 14253 |
| 23B      | 15272  | 241517 | 17122 | 54321 |
| BANK1    | 5789   | 5182   | 6798  | 5122  |
| 23C      | 740    | 745    | 736   | 738   |
| 2.25     | 667    | 671    | 603   | 632   |
| 23D      | 16415  | 25693  | 7986  | 10711 |
| 2.24     | 19802  | 12101  | 24203 | 19298 |
| MATAURA1 | 4931   | 5252   | 4581  | 5227  |
| BM24     | 16195  | 19568  | 33546 | 21893 |

### **SUPA**

| BM25  | N/A   | N/A   | N/A    | N/A   |
|-------|-------|-------|--------|-------|
| 34H   | 1719  | 1514  | 1543   | 11841 |
| 2.10  | 3511  | 2996  | 2944   | 5800  |
| 34C   | 3998  | 4031  | 4484   | 6228  |
| 34GC  | 1849  | 1738  | 1793   | 3002  |
| 19BB  | 11405 | 10952 | 10534  | 1933  |
| 19CB  | 1973  | 1927  | 1919   | 10702 |
| 210   | 3687  | 3053  | 4370   | 1724  |
| 20C   | 14469 | 6666  | 254246 | 4049  |
| 20D   | 6565  | 6339  | 5930   | 2962  |
| BM20A | 11733 | 11220 | 12101  | 1499  |



No anomalous trends were identified. Some marks have shown an overall trend of increasing tilt; however, none are currently of concern.

# 8 COMPLAINTS

The company maintains a complaints database in accordance with consent condition 13f. There were no complaints received during 2021 in relation to dewatering or settlement.

A number of other property damage complaints or enquiries were made during the year, generally in relation to impacts of blast vibration. As a result, some of the properties were inspected to determine likely sources. No evidence was found of land deformation as a consequence of mining activities.



# 9 CONTINGENCY ACTIONS AND FUTURE IMPACTS

No consent or management plan settlement trigger has been activated.

#### 10 UNDERGROUND WATER QUALITY

Underground dewatering water is sampled at the Water Treatment Plant. This is a combination of underground water from Favona, Trio, Correnso, SUPA, Martha mines and treated service water, but gives a general indication of underground water quality. Additionally, Environmental staff endeavour to collect quarterly water samples from four locations underground.

The only mine backfilled and considered near its final closure state is the Favona underground mine. Separate sampling of Correnso and Favona underground water from sumps at the lowest accessible points in each mine began during 2018. Sampling from the two Martha Underground bores, PC1 and PC2, began in 2021.

During the reporting period, results from the composite underground dewatering had stable pH and EC values averaging 6.6 units and 291 mS/m respectively. Sulphate values averaged 1930 g/m³. Fe averaged 4.9 g/m³ and Mn 17 g/m³. Other metal concentrations were low (Figure 41; Appendix E).

Underground sites were sampled eight times in 2021. These included:

705 level Correnso x2

800 level Favona x1

800 level PC1 bore x3

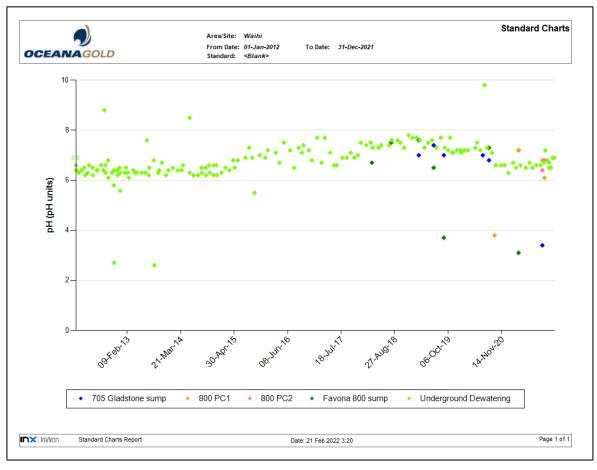
800 level PC2 bore x2

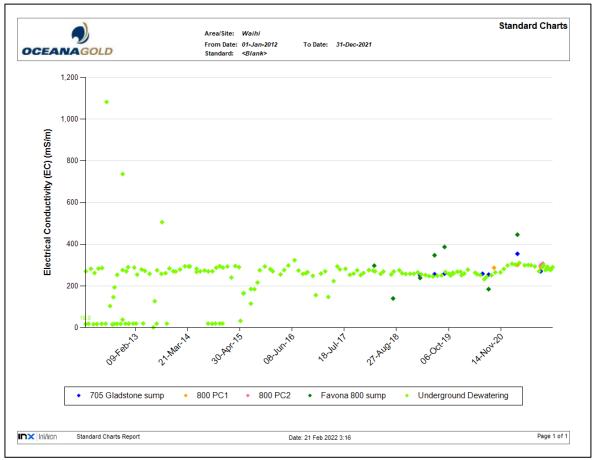
Some sites were not able to be sampled due to dry sumps, the bore not running, or samples missed during lockdown or access issues. The composite underground mine water was sampled monthly throughout the period

From the sites listed above, the single Favona sample had the highest EC and sulphate (446 mS/m and 3500 g/m³). It also had the lowest pH (3.1 pH units) (Figure 41). This could be due to the 800 sump often being dry and results more elevated when the sample was able to be taken. All other samples returned similar results, except for a 3.4 pH recorded in Correnso. The seven samples, excluding the Favona result (only one sample taken), recorded averages of:

EC 300 mS/m

Sulphate 1900 g/m<sup>3</sup>


pH 6.2.


Figures 42 to 45 show Piper Diagrams for the various types of underground water. All water types have a similar make up of cation and anions. UG dewatering and Correnso and at times Favona are calcium sulphate waters and PC01 and at times Favona, are calcium magnesium sulphate waters.

While elevated levels of some metals are noted, all underground water is currently pumped to the Water Treatment Plant.

Figure 46 displays a Piper diagram for treated water. Treated water is used a service water underground, as discussed in Section 4. Treated water quality is extremely consistent as it needs to comply with strict water quality parameters prior to river discharge. In 2021 service water made up 5% of the dewatering volume total and is unlikely to have any effect on groundwater quality. Water quality results are provided in Appendix E.









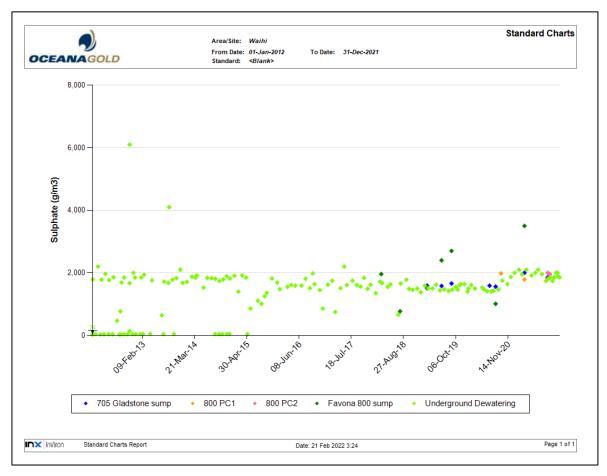



Figure 41: Underground sample sites – Key Chemistry

Underground Dewatering

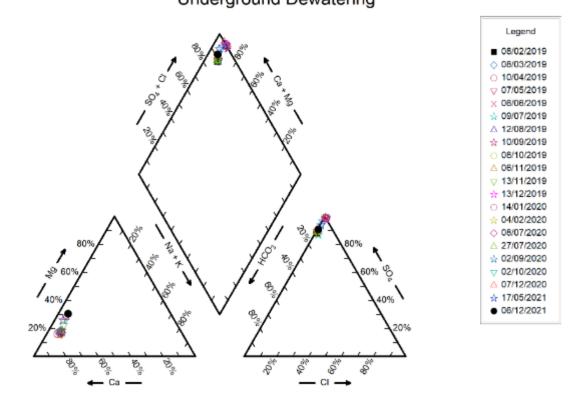
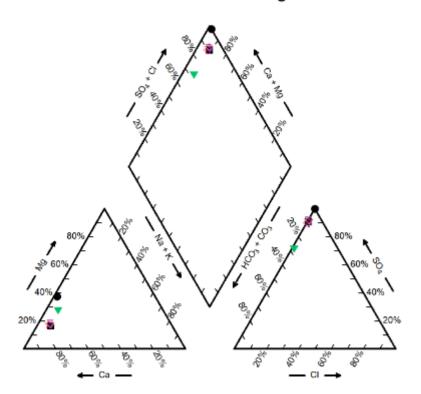




Figure 42: Underground Dewatering Piper Diagram



## Correnso Underground Water



Legend

■ 26/02/2019

◇ 19/06/2019

☆ 04/09/2019

※ 25/06/2020

○ 11/08/2020

▼ 22/03/2021

● 19/09/2021

Figure 43: Correnso Underground Piper Trilinear Diagram
Favona Underground Water

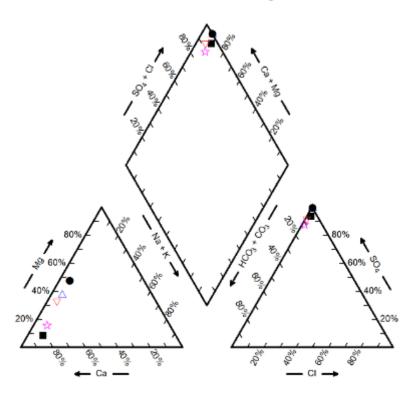
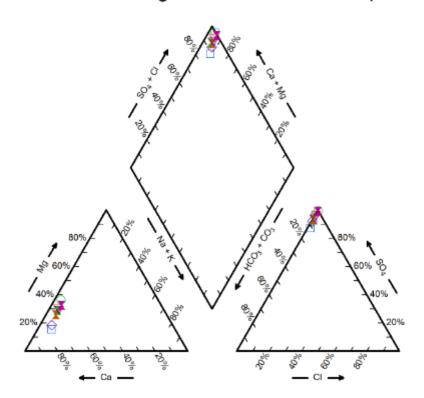






Figure 44: Favona Underground Piper Trilinear Diagram



## Underground mine sites - comparison



Legend

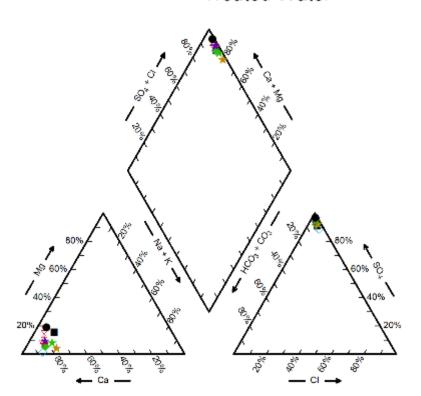
□ Fav 08/21

◇ Corr 08/20

○ PC1 09/20

▼ PC1 03/21

▼ PC1 09/21


▽ PC2 09/21

▼ PC2 10/21

▼ PC1 10/21

Figure 45: Underground Comparison Water Piper Trilinear Diagram

## Treated Water



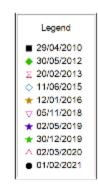



Figure 46: Treated Water Piper Trilinear Diagram



## 11 IMPROVEMENT ACTIVITIES

Works that have been undertaken to improve environmental performance during 2021 include:

Installation of the final three piezometers to monitor Project Martha dewatering

Proposed improvement activities to be undertaken in 2022:

- Review of the Martha piezometer network to assess effectiveness
- Installation of a VW piezometer in the underground Martha mine to ~500mRL

## 12 PEER REVIEW RECOMMENDATIONS 2021

This is a new section to display peer review recommendations and how they have been or are going to be addressed in this report (Table 10).

Table 10: Peer recommendations and actions 2021

| Table 10: Peer recommendations and                                                                                                                                                                                                                                                                                                         | u actions 2021                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Recommendation                                                                                                                                                                                                                                                                                                                             | Action                                                                      |
| 8.2 The Peer Reviewer recommends that any (underground) substantial or anomalous water inflows, or wet ground conditions be recorded along with the structural geology during the driving of the three declines that are planned to access the deeper ore bodies for Project Martha                                                        | Action created for Principal Geotech<br>Andre Alipate                       |
| 8.6 There needs to be better resolution provided on a subset second hydrograph. The current vertical axis scale (resolution) does not allow distinguishing subtle changes/trends that may occur from mine induced impacts or climatic conditions for individual piezometers and shows cluttering of data with overlapping of piezo data.   | Requested to GWS. To be included in 2022 report                             |
| 8.7 "Alluvium water level contours" Need to label groundwater level contours on Figure 9 and need to include data points in contouring shallow VWP tips for piezometers P91, P93, P94, P101 and P102                                                                                                                                       | Included in Figure 10                                                       |
| 8.8 Younger Volcanics Figure 12. Suggest that you provide flow direction arrows on Figure 12                                                                                                                                                                                                                                               | Included in Figure 12                                                       |
| 8.9 Groundwater Results Figure 14 "Andesite Water Level Contours" Should this be renamed as the Upper Andesite Water Level Contours. Suggest providing groundwater flow direction arrows onto Figure 14. Add label for the N-S Edward lode structure and vein systems as discussed in Section 5.3.4 onto Figure 14.                        | Included in Figure 14                                                       |
| 8.11 The Peer Reviewer recommends that private wells are located on a map and the Figure number should be referenced in the text                                                                                                                                                                                                           | Included in Figure 9, 5.3.8 text                                            |
| 8.13 The Peer Reviewer recommends that the CEPA Hydrographs could be improved with labelling of geological units. The Peer Reviewer also recommends including a rainfall bar chart on all hydrographs or at least with graphs showing recharge changes including subdued effects. The Peer Reviewer recommends that performance of P94-144 | Included in Figures 17 – 28. One hydrograph includes rainfall on Figure 27. |



| should be reviewed annually to confirm whether the water levels rebound or continue to decline.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P94 performance reviewed monthly as part of data download QAQC.                                                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| 8.15 The Peer Reviewer recommends that the performance of all the Waihi South piezometers be reviewed, and their functionality confirmed in the 2021-22 DW&S report. The Peer Reviewer recommends an additional piezometer is installed near either P111/P112 which is located deeper into the andesite to confirm current measurements of these piezometers and monitor depressurisation.                                                                                                                                                        | Review has been commissioned with GWS. Report to be supplied to peer reviewers and included in 2022 report.                     |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |  |  |
| 8.16 The Peer Reviewer recommended that a program for additional piezometers in the North Wall. Recommends deepest piezometers tips are 100m deeper than proposed in the GWS Memo. The Peer Reviewer also recommends OGNZL check the proximity of the proposed locations relative to a suspected substantial EW trending fault (Waihi Fault) postulated behind the North Wall and consider whether additional piezometers further back from the proposed three new multilevel piezometers are needed with respect to deep wall cutback stability. | Included in GWS piezometer network review.                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Included in OMC min-constant                                                                                                    |  |  |
| 8.17 Recommend a replacement piezometer in Younger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Included in GWS piezometer                                                                                                      |  |  |
| Volcanics located further to southwest to monitor potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | network review.                                                                                                                 |  |  |
| impacts from Edward/Rex mine workings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Included in OWO                                                                                                                 |  |  |
| 8.18 The Peer Reviewer recommends select piezometers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Included in GWS piezometer                                                                                                      |  |  |
| from these investigations should be incorporated into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | network review                                                                                                                  |  |  |
| regional network to reduce spatial piezometric data gaps in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |  |  |
| this area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                               |  |  |
| 8.19 The Peer Reviewer recommends that a more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Included in GWS piezometer                                                                                                      |  |  |
| thorough review of the piezometer network be conducted and reported on in the 2021-22 DW&S report                                                                                                                                                                                                                                                                                                                                                                                                                                                 | network review                                                                                                                  |  |  |
| 8.20 The Peer Reviewers recommend the inclusion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Review has been commissioned                                                                                                    |  |  |
| conceptual hydrogeological cross-sections showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with GWS. To be included in 2022                                                                                                |  |  |
| relationships between piezometric levels and geological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | report.                                                                                                                         |  |  |
| units/structures and mine surface and underground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |  |  |
| infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T. (2000) 100 (100)                                                                                                             |  |  |
| 8.21 It should be noted that while the UG dewatering and Correnso and at times Favona are calcium sulphate waters that PC01 and at times Favona, are calcium magnesium sulphate waters. The DW&S report does not include any                                                                                                                                                                                                                                                                                                                      | Text amended Section 10                                                                                                         |  |  |
| analyses for the treated surface water which is used for underground services. OGNZL advise that it will provide analytical data for the service water in future DW&S reports                                                                                                                                                                                                                                                                                                                                                                     | Treated water data included in Section 10                                                                                       |  |  |
| 8.22 The Peer Reviewer recommends that the Open Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Have contacted WRC re:                                                                                                          |  |  |
| surface runoff water quality monitoring program should be re-evaluated and reinstated once the Phase 4 North Wall Cutback is completed. In the meantime, OGNZL should consider seeking temporary suspension of this aspect of Condition 8 from Waikato Regional Authority                                                                                                                                                                                                                                                                         | suspension. Response is that consent variation not required, and they understand the requirement currently cannot be fulfilled. |  |  |
| 8.24 The Peer Reviewer recommends that the requirement for water chemistry data in shallow and deep aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                      | A separate report "Shallow and deep Aquifer Report" was submitted                                                               |  |  |



needs to be clarified so that an appropriate baseline monitoring program can be instigated as soon as possible. The Peer Reviewer recommends that a section on "Predicted Post Closure Effects" should be included in future DW&S Reports

has been queried with WRC if sufficient.

To be included in 2022 report.



## 13 RESOURCE CONSENT EVALUATION

Comments on compliance with all conditions of the Martha, Favona, Trio, Correnso and Project Martha consents including any reasons for non-compliance or difficulties in achieving conformance with the consent conditions are summarised in Table 10. The Correnso/Golden Link take 124860 has been superseded by Project Martha Water Permit 139551.

Table 11 – Favona, Trio, Correnso, SUPA, Project Martha Consent Condition Compliance Assessment

| Assessii                                                                                                                                                                                                                  | T _                    | 10 "       |                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                                                                                                                                                                                               | Consent<br>(Condition) | Compliance | Comment                                                                                                                                                                         |
| Favona Dewatering and Settlement Plan                                                                                                                                                                                     | 109742 -<br>109746     | 1          | ı                                                                                                                                                                               |
| Favona groundwater take                                                                                                                                                                                                   | 109742 (3)             | Full       | Favona discharge plumbed into main dewatering line, new meter installed on Favona line.                                                                                         |
| Divert and discharge ground and surface water (farm run-off and intercepted groundwater) from around the (Favona) project area.                                                                                           | 109743                 | Full       | Non-mine run-off has been diverted to natural drainage.                                                                                                                         |
| Discharge waste rock and ore onto land in temporary surface stockpiles and to discharge seepage from the temporary stockpiles into ground.                                                                                | 109744                 | Full       | Stockpile area design & construction. Water quality monitoring in manholes and shallow bores (the subject of a separate report – Favona Water Quality Monitoring Annual Report. |
| Discharge waste rock into land underground in the project area as backfill and to allow degraded quality groundwater to discharge from the flooded workings in the project area into the surrounding ground post closure. | 109745                 | Full       | Favona back-filling completed.                                                                                                                                                  |
|                                                                                                                                                                                                                           |                        |            | Dewatering being maintained                                                                                                                                                     |
| Discharge treated mine water from the Martha Mine Water Treatment Plant to ground in association with flooding the underground mine on completion of the project.                                                         | 109746                 | Full       | Favona Water Quality<br>Monitoring Annual Report                                                                                                                                |
|                                                                                                                                                                                                                           | 109742 –<br>109746     |            |                                                                                                                                                                                 |
|                                                                                                                                                                                                                           | Schedule 2             |            |                                                                                                                                                                                 |
| Water Management Plan                                                                                                                                                                                                     | (1)                    |            | Under separate negotiation                                                                                                                                                      |
| Prior to exercise of this consent, the consent holder<br>shall prepare, and submit to the Council for its written<br>approval, a Settlement, Dewatering and Water Quality<br>Monitoring Plan                              | (2)                    | Full       | Dewatering and<br>Settlement Monitoring<br>Plan, April 2019                                                                                                                     |
| The monitoring regime shall be designed to assess the effects of:                                                                                                                                                         |                        | Full       | Defined in this document                                                                                                                                                        |
| a) mine dewatering on the regional groundwater system,                                                                                                                                                                    |                        |            |                                                                                                                                                                                 |



| h) | mine | dewatering | on settlement |   |
|----|------|------------|---------------|---|
| D) |      | uewatering | on semement   | • |

- c) leachate from stockpiles containing potentially acid forming material on shallow groundwater quality, and
- d) the discharge of degraded-quality water from the backfilled and flooded workings on groundwater quality.

Final details of the monitoring locations are to be agreed with the Council. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed, and updated as necessary, by the consent holder at least once every two years. Any updated Plan shall be promptly forwarded to the Council for approval and following approval the updated Plan shall be implemented in place of the previous version.

In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Settlement, Dewatering and Water Quality Monitoring Plan, then the conditions of this consent shall prevail.

In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Council in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:

- a) explain the cause of the non-conformance,
- b) agree with the Council on the appropriate settlement contingency measures to be implemented as described,
- c) implement settlement contingency measures as appropriate,
- d) advise the Council on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

The report shall include at least the following information:

- a) volume of groundwater abstracted
- b) data from monitoring undertaken during the previous year including groundwater contour plans

c) an interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions.

c) Reported annually in Favona Water Quality Monitoring Report.

d) Combined dewatering sample taken monthly

Full Section 5

Stockpile water quality bores agreed in Nov 2006

Full Consent activated following approval of Plan. Combined plan, approved by WRC, April

2019

Full No inconsistency

identified

(3) Full Section 7

Correspondence in Tilt

Reports

Section 7

Propose ongoing monitoring

Not considered necessary as on company owned

farmland

Propose ongoing

monitoring

Full Section 4

Full Section 5

Full Section 5 & 9

uii

(4)

effects based on actual monitoring data, and what



This analysis shall be undertaken by a party Full GWS Ltd & OGNZL staff appropriately experienced and qualified to assess the information. d) any contingency actions that may have been taken Full Section 9 during the year. e) comment on compliance with all conditions of this Full This section consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of this consent. Trio Dewatering and Settlement Plan - General 121416 - 121418, 121446 & 121447 conditions Schedule 1 Prior to exercise of this consent, the consent holder Full Combined plan Approved shall prepare, and submit to the Council for its written by WRC April 2019 (5)approval, a Settlement, Dewatering and Water Quality Monitoring Plan Full Defined in plan The monitoring regime shall be designed to assess the effects of: i) dewatering on the regional groundwater system, ii) dewatering on settlement; iii) No significant flooded iii) the discharge of degraded-quality water from the workings as yet. backfilled and flooded workings on groundwater quality. Full Final details of the monitoring locations are to be Defined in approved Plan agreed with the Council. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation. The exercise of this consent shall be in accordance with Full Consent activated the Plan as approved by the Council. The Plan shall be following approval of Plan reviewed, and updated as necessary, by the consent Jul 2014 holder. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version. In the event of any conflict or inconsistency between Full No inconsistency identified the conditions of this consent and the provisions of the Settlement, Dewatering and Water Quality Monitoring Plan, then the conditions of this consent shall prevail. Schedule 1 Dewatering and Settlement Monitoring Report. (6)The Report shall, as a minimum, provide the following information: Section 4 i) volume of groundwater abstracted Full ii) data from monitoring undertaken during the previous Full Section 5 year including groundwater contour plans iii) an interpretation and analysis of the monitoring data, Full Section 5 & 9 in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure



contingency actions, if any, the consent holder proposes to take in response to those predictions.

This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information.

iv) any contingency actions that may have been taken during the year.

v) comment on compliance with all conditions of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of this consent.

Monitoring - Tilt:

In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations, installed in accordance with the Settlement, Dewatering and Water Quality Monitoring Plan required pursuant to condition 2 above, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Council in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:

i) explain the cause of the non-conformance,

ii) agree with the Councils on the appropriate settlement contingency measures to be implemented,

iii) implement settlement contingency measures as appropriate,

iv) advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

The consent holder shall provide to the Council an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:

a) The volume of groundwater abstracted;

 The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;

An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately

Full GWS Ltd & OGNZL staff

Full Section 9

Full This section

Schedule 1 (7)

Full Section 7

Correspondence in Jun 2019 & Jan 2020

Section 9

Propose ongoing

monitoring

Not considered necessary

Propose ongoing monitoring

Full

Full Section 5

Full Annual Report reviewed by GWS Ltd and

Section 4

Engineering Geology



experienced and qualified to assess the information;

d) Any contingency actions that may have been taken during the year; and

e) Comment on compliance with Conditions 27 to 34 of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions

The report shall be forwarded in a form acceptable to the Council.

Advice note:

The Dewatering and Settlement Monitoring Report shall be consistent with the Dewatering and Settlement Monitoring Report prepared as a condition of the ground dewatering consent (RC 124860) granted by the Waikato Regional Council.

Golden Link Project Area Groundwater Take - 124860 General conditions

#### **Monitoring - Abstraction Volume**

of consent.

4.The consent holder shall monitor the volume of water abstracted on a weekly basis and shall report this to the Waikato Regional Council on a quarterly basis.

#### **Dewatering and Settlement Monitoring Plan**

5. Prior to the exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system, as proposed in the consent application. The monitoring regime shall be designed to assess the effects of:

dewatering on the regiona groundwater system; and

(ii) dewatering on settlement; and

(iii) the discharge of degraded quality water from the backfilled and flooded workings on groundwater quality.

Monitoring locations are to provide appropriate resolution of surface tilt relative to the scale of surface infrastructure and final details are to be agreed with the Councils. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

Full Section 9

Full This section.

Full Section 4

Full Latest plan April 2019

Full Defined in plan

iii) No significant flooded workings as yet.

Full Defined in plan



Plan April 19

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed and updated as necessary by the consent holder. Such updated Plans shall relate to the Correnso Mine or to any new mine within Area L. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version.

In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

#### **Dewatering and Settlement Monitoring Report**

6.The consent holder shall provide to the Councils an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:

- (i) The volume of groundwater abstracted:
- (ii) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
- (iii) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information;
- have been taken during the year; and
  (v) Comment on compliance with
  condition 5 of this consent including
  any reasons for non-compliance or
  difficulties in achieving conformance
  with the conditions of consent.

Any contingency actions that may

The report shall be forwarded in a form acceptable to the Councils.

### **Monitoring - Tilt**

(iv)

7. In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations installed in accordance with the Dewatering and Settlement Monitoring Plan required pursuant to condition 5 of this consent, and such tilt is caused by the de-watering and/or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Councils in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then engage in a process with the Councils:

(i) explain the cause of the non-conformance,

Full Section 4

Full

Full Section 5

Full Section 5 & 9

Full Section 9

Full Section 12

Full Section 7

Correspondence in Jun 2019 & Jan 2020

Section 9

Doc ref: WAI-200-REP-007-004



Propose appropriate settlement contingency measures for discussion with Councils and agree with the Councils on the appropriate settlement contingency measures and the timing for their implementation as described.

(iii) implement agreed settlement contingency measures as appropriate within the agreed time limit,

advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

Propose ongoing monitoring

Not considered necessary

Propose ongoing monitoring

#### Monitoring - Water Quality

8. The consent holder shall monitor throughout the period of operation, the chemistry of the groundwater, pit runoff and pit discharge water abstracted from the open pit. The monitoring data is to be used to correlate these inflows with pit lake water quality predictions, and to provide a database for input into the closure plans. The sampling parameters and frequencies shall be described in the Martha Extended Project dewatering consent (unless agreed otherwise with the Waikato Regional Council) with the results forwarded to the Waikato Regional Council on an annual basis.

#### **Other Water Users**

9.If, in the opinion of the Waikato Regional Council, the exercise of this consent adversely affects stock, domestic or other water supplies, then the consent holder shall, at its own cost, be responsible for providing to the owner of those water supplies an alternative equivalent water supply, to the satisfaction of Waikato Regional Council. The consent holder shall be responsible for making an alternative water supply available within 12 hours of being directed to do so by the Waikato Regional Council.

Partial

Pit sampling limited, dewatering sampled monthly. Favona and Correnso Underground WQ measured separately. Underground dewatering from Project Martha bores

commenced.

Full

## **Project Martha - Common Conditions**

#### **Dewatering and Settlement Monitoring Plan**

14. The objectives of the groundwater and settlement management system shall be to ensure that dewatering operations do not give rise to surface instability and differential settlement beyond that authorised by this consent.

15. Two months prior to dewatering below 700 m RL (mine datum), the consent holder shall prepare, and submit to the Councils for their certification, a Dewatering and Settlement Monitoring Plan. The purpose of the Dewatering and Settlement Monitoring Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

## 202.2018.00000857.001

Full

Dewatering and Settlement Monitoring Plan approved April 2019 (Conditions 14-18)



- 16 The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system set out in Condition 14 of this schedule. The monitoring regime shall be designed to assess the effects of: a. Dewatering on the regional groundwater system; and b. Dewatering on settlement.
- 17. Monitoring locations are to provide appropriate resolution of mine inflows and pumping, groundwater levels (both for shallow and deep aquifers) and ground surface tilt relative to the scale of surface infrastructure, throughout the area within the maximum extent of the groundwater cone of depression and particularly in the areas above and adjacent to the mining activities provided for in this consent. Final details are to be agreed with the Councils, but are to include additional piezometers and extensometers located along the line of upper level workings in the Rex Orebody. The Dewatering and Settlement Monitoring Plan shall also provide groundwater and settlement trigger limits that will initiate the implementation of contingency mitigation and / or monitoring measures and shall detail any linkages with the operation of the Martha Pit and Martha Underground Mine.
- 18. The exercise of this consent shall be in accordance with the Dewatering and Settlement Monitoring Plan as certified by the Councils. The Dewatering and Settlement Monitoring Plan shall be reviewed and updated as necessary by the consent holder. Any updated Dewatering and Settlement Monitoring Plan shall be promptly forwarded to the Councils for certification, and following this process, the updated plan shall be implemented in place of the previous version.
- 19. In the event that a tilt greater than 1 in 1,000 occurs between any two network monitoring locations installed in accordance with the Dewatering and Settlement Monitoring Plan required pursuant to Condition 15 of this schedule, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Councils in writing within 20 working days of receiving the results of the monitoring. The consent holder shall then:
- a. Explain the cause of the non-conformance;
- b. Propose appropriate settlement contingency measures to the Councils and the timing of implementation thereof by the consent holder;
- c. Implement settlement contingency measures as appropriate within the agreed time limit; and
- d. Advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

Full Notification of tilts greater than 1:1000 provided in Tilt Report

No non-conformances



20. The consent holder shall as a matter of urgency, advise the Councils of any significant anomalies identified by the regular reading of groundwater levels in the piezometer network. Such advice is to include an explanation of the anomalous results and actions proposed to address any issues identified. This report is to be provided to the Councils within 10 working days of the anomalous results being identified. A "significant anomaly" is defined as a drop in groundwater level greater than the seasonal variation in piezometers within the alluvium and younger volcanic rocks and a drop of 15 m or more in the recordings from piezometers tapping the upper 50 m of Andesite over a one month period.

#### **Dewatering and Settlement Monitoring Report**

22. The consent holder shall provide to the Councils (within one month of an agreed anniversary date) an annual Dewatering and Settlement Monitoring Report. The report shall, as a minimum, provide the following information:

a. The volume of groundwater abstracted;

b. The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;

c. An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of the future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions, this analysis shall be undertaken by a party appropriately experienced and qualified to assess the information;

d. Any contingency actions that may have been taken during the year; and

e. Comment on compliance with Conditions 14 to 21 of this schedule including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

f. The report shall be forwarded in a form acceptable to the Councils.

## Project Martha Groundwater take permit 139551

#### **Dewatering Level**

 The exercise of this consent shall not result in groundwater lowering to a level below 500mRL.

#### **MONITORING**

 Upon commencement of this consent, the consent holder shall monitor the volume of water abstracted on a weekly basis and shall report this to the Waikato Regional Council. Full

Full Section 4

Full Sections 5, 6 and 9

Full Section 9

Full This section

Full Groundwater level not lowered below 500 mRL.

# Abstraction volumes reported to Council via

Full Hyquest,

87

Doc ref: WAI-200-REP-007-004



3. Upon the first exercise of this consent the consent holder must telemeter - via a telemetry system developed after liaison with the Waikato Regional Council to ensure that the telemetry system is compatible with the Waikato Regional Council telemetry system standards and data protocols - continuous 15 minute values of: gross take volume (in units of cubic metres). The data must be reported once daily to the Waikato Regional Council via the telemetry system. There must be 96 values, respectively, per daily report. When no water is being taken the data must specify the gross take volume and calculated net take volume as zero.

Appendix E

As above.

Full

N/A

Full

Full

The consent holder shall monitor the chemistry of the water abstracted under this consent. Prior to the commencement of this consent the sampling parameters and frequencies shall be agreed with the Waikato Regional Council, with the results forwarded to the Waikato Regional Council on an annual basis. The consent holder may change the sampling parameters and frequencies with the agreement of the Waikato Regional Council.

#### **OTHER WATER USERS**

If, in the opinion of the Waikato Regional 5. Council, the exercise of this consent adversely affects any existing stock, domestic or other water supplies, then the consent holder shall, at its own cost, be responsible for providing to the owner of those water supplies an alternative equivalent water supply, to the satisfaction of Waikato Regional Council. The consent holder shall be responsible for making an alternative water supply available within 12 hours of being directed to do so by the Council.

Provided to Waikato Regional Council in June

## MONITORING OF THE SHALLOW AND DEEP **AQUIFERS**

- 6. The consent holder shall upon commencement of this consent and at five yearly intervals thereafter, provide a report to the Waikato Regional Council commenting on the effect the groundwater take and dewatering activity is having on the deep and shallow aquifers under the Martha Pit and immediate surrounds. The report shall as a minimum, provide the following information:
  - (a) The nature of the geology under the Martha Pit and immediate surrounds:
  - (b) Comment on the existing groundwater chemistry for the deep and shallow aguifers:
  - (c) Comment on the groundwater levels in the deep and shallow aquifers; and
  - (d) Provide details of any wetland areas and any other known aquatic ecological values that are dependent on the surface contribution of shallow and deep groundwater outflows.

2019



Taking into account all of this information (and any other relevant data) the consent holder shall provide comment on the effects the dewatering activity is having on the shallow and deep aquifers under the Martha Pit and immediate surrounds.

Doc ref: WAI-200-REP-007-004



## 14 CONCLUSION

Monitoring of dewatering, groundwater, settlement, tilt, and water quality in and around the Martha, Favona, Trio, Correnso, SUPA and Project Martha operations was undertaken during 2020 in accordance with the consent conditions and the approved monitoring plan.

In 2021, water levels underground were held at approximately 705 mRL throughout the year. No significant changes to groundwater contours in the alluvium, younger volcanics and the upper andesite rock occurred relating to the Martha Mine site during 2021.

At Favona, water levels were maintained around 800mRL and dewatering has maintained the steep but localised depression of the groundwater (contour pattern) along the NE-SW trending vein structure. Water levels in the younger volcanic suite and overlying alluvium have not responded to the significant dewatering of the vein-hosted andesite. Minor or no response has been seen in wells monitoring the upper layers of the andesite rock body. Response is only evident in deeper wells constructed in the andesite rockmass that intercept structures connected to the vein systems.

The drop in pressure in the 975 mRL piezometer in well P94 noted in 2018 and 2019 has discontinued and now appears stable. Shallower piezometers at this location have not shown any corresponding drop in pressure. The depressurisation effect at the 975mRL level is expected to reverse once mining has passed the area. Monitoring of all other piezometers in the Waihi East network show levels consistent with baseline data recorded in 2011.

Settlement monitoring, to assess any effects from groundwater changes, was conducted in May/June and November/December 2021. Settlement survey results indicated that 97% (392/403) of marks graphed were within the predicted settlement ranges, based on the newly implemented Project Martha predicted settlement. Of the greater-than-predicted settlements, four were above or near the Favona Underground mining. The other seven exceedances are generally associated with sites that are considered to be affected by unstable ground or soil creep due to proximity to stream banks or drains. At all these locations no visible effects were noted nearby, and shallow piezometers have not shown any abnormal changes.

A general settlement rate across town of 10 to 65 mm over the period from 1999 to present has been identified and is considered to be a response to ongoing dewatering of structures within the deeper andesite within the Martha groundwater system. There are no widespread ongoing dewatering effects observed in the younger volcanic or upper andesite rock that would give rise to such widespread settlement.

Settlement continues to be observed in marks near and overlying the Favona mine, although the total amount is similar to previous years. The deep monitoring wells connected to the Favona vein system are the only wells showing dewatering changes consistent with this settlement, indicating the settlement is likely to be a response to dewatering of the deeper structures of the Favona vein system and/or to changes in the rockmass volume associated with mining at Favona. Tilt is also apparent between marks near and overlying the Favona mine which is occurring on farmland owned by OGNZL and is not expected to be an issue.

Some elevated trace metal results were noted from underground water sampling during the period; however, this is expected, and all underground water is currently collected and treated.



## 15 REFERENCES

- Davies B., 2002: A review of the structural framework and evolution of the Waihi District, Hauraki Goldfield, New Zealand. Unpublished Internal Report, Newmont.
- Davies B., 2004: Updated structural environment for the Waihi District. Unpublished Internal Memorandum, Newmont.
- Engineering Geology Ltd, 2008: East Layback Project Ground Settlement. Technical Report for Newmont Waihi Gold, November 2008.
- Engineering Geology Ltd, 2010: Proposed Trio Development Project Assessment of Ground Settlement. Technical Report for Newmont Waihi Gold, June 2010.
- Engineering Geology Ltd, 2012. Evidence of Trevor Matuschka at Correnso Hearing. Prepared for Newmont Waihi Gold, November 2012.
- IGNS, 2002: Waihi Underground mine workings Stage II investigations Volume 2 Figures. Prepared for Waihi Underground Mine Workings Technical Working Party. Client Report 2002/46, August.
- GWS Ltd, 2010: Proposed Trio Development Project Assessment of Groundwater Inflows and Throughflows. Technical Report for Newmont Waihi Gold, June 2010.
- Newmont Waihi Gold, 2013: Favona Water Quality Monitoring, Annual Report 2013. Unpublished Internal Report, Newmont, October 2013.
- URS, 2003: Favona Underground Mine Assessment of Groundwater Issues. Favona Underground Project (Document) 9, 19 March.
- URS 2008; Martha Pit Lake An Assessment of Water Balance and Water Quality. Technical Report for Newmont Waihi Gold, September 2008.
- URS 2009; Martha Pit Lake An Assessment of Water Balance and Water Quality. Technical Report for Newmont Waihi Gold, August 2009.
- URS, 2009: Favona Temporary Stockpile Water Quality Report.



## Appendix A Relevant Consent Conditions



# Extract from conditions of Waikato Regional Council Resource Consents 109742 to 109746, pertaining to Dewatering and Settlement:

#### **SCHEDULE TWO - GENERAL CONDITIONS**

The granting of consents (109742 to 109746 inclusive) is subject to the following conditions, which shall apply to each individual consent.

## Water Management Plan

1. Prior to exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Water Management Plan describing the water management system to be applied across the project area, with emphasis on management of stormwater including water storage options, decline and mine dewatering, and stockpile runoff.

The consent holder shall exercise this consent in accordance with the approved Water Management Plan.

## Settlement, Dewatering and Water Quality Monitoring Plan

2. Prior to exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Settlement, Dewatering & Water Quality Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement, the groundwater hydraulic regime and on water quality, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system, as proposed in the consent application. The monitoring regime shall be designed to assess the effects of:

- a) mine dewatering on the regional groundwater system,
- b) mine dewatering on settlement;
- leachate from stockpiles containing potentially acid forming material on shallow groundwater quality, and
- d) the discharge of degraded-quality water from the backfilled and flooded workings on groundwater quality.

Final details of the monitoring locations are to be agreed with the Council. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

The Plan shall be consistent with the recommendations included in the reports to the Council entitled:

- \*\*Proposed Favona Underground Mine Review of Groundwater Assessment" dated October 2003 and prepared by Pattle Delamore Partners; and
- "Technical Review of Water Quality and Geochemistry Issues Favona Underground Project", dated October 2003 and prepared by GEOKEM.

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed, and updated as necessary, by the consent holder at least once every two years. Any updated Plan shall be promptly forwarded to the Council for approval and following approval the updated Plan shall be implemented in place of the previous version.



In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Settlement, Dewatering & Water Quality Monitoring Plan, then the conditions of this consent shall prevail.

- 3. In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations, installed in accordance with the Settlement, Dewatering & Water Quality Monitoring Plan required pursuant to condition 2 above, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Council in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:
  - a) explain the cause of the non-conformance.
  - b) agree with the Council on the appropriate settlement contingency measures to be implemented as described,
  - c) implement settlement contingency measures as appropriate,
  - d) advise the Council on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

## Settlement, Dewatering & Water Quality Monitoring Report

- 4. The consent holder shall provide to the Council (with a copy provided to the Hauraki District Council) an annual Settlement, Dewatering & Water Quality Monitoring Report. The report shall include at least the following information:
  - a) the volume of groundwater abstracted,
  - b) the data from monitoring undertaken during the previous year including groundwater contour plans (derived from the data) in respect of the piezometer network,
  - c) an interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information.
  - d) any contingency actions that may have been taken during the year,
  - comment on compliance with all conditions of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of this consent.

The report shall be forwarded in a format acceptable to the Council.



## Extract from conditions of Hauraki District Council Resource Consent 97/98-105, pertaining to Dewatering and Settlement:

#### 3.30 Settlement

- a) The consent holder shall prepare a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of dewatering on land settlement and the effects of the mining activities on the subsurface hydraulic regime. The Dewatering and Settlement Monitoring Plan shall address at least the following:
  - An overall description of the groundwater and settlement monitoring system and the measures to be adopted to meet the objectives of the groundwater and settlement monitoring system.
  - ii) Details of the piezometer network proposed to monitor the effects of pit dewatering on the aquifers under Waihi township.
    - Any monitoring bores additional to the existing piezometer network shall be installed and operational prior to the exercising of this consent.
  - iii) Details of the settlement monitoring network proposed to monitor the extended zone which has been, or is likely to be, affected by settlement caused by mine dewatering.
    - Any settlement monitoring network locations additional to the existing monitoring locations shall be installed and operational prior to exercising this consent.
  - iv) Details of the survey of facilities in the Waihi township considered by the consent holder to be potentially "at risk" of damage from ground settlement caused by mine dewatering. The survey to be completed shall include collection of information about the facility's location, the nature of construction materials, the nature of sensitive equipment that might be potentially "at risk", and the sensitivity of this equipment to ground settlement caused by mine dewatering and/or tilt.
    - This survey shall be completed prior to exercise of the Waikato Regional Council consent number 971286.
  - v) A settlement contingency plan to include mitigation measures to be implemented in the event that ground settlement caused by mine dewatering induces a tilt that exceeds 1 in 1000 between any two network monitoring locations spaced no less than 25 metres apart. The settlement contingency plan shall particularly address those facilities identified by the consent holder as being potentially "at risk" of damage from ground settlement caused by mine dewatering.
  - vi) A dewatering contingency plan that describes the steps the consent holder shall implement in the event that dewatering results in adverse impacts on affected aquifer systems and associated groundwater supplies used for domestic, stock or other purposes.
    - In detailing the monitoring programmes the consent holder shall provide information on the monitoring methods proposed, the parameters to be monitored, and the calibration and maintenance of monitoring equipment.
    - In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of Waikato Regional Council consent number 971286 shall prevail.
- b) The Dewatering and Settlement Monitoring Plan shall be submitted to Hauraki District Council for approval at least one month prior to the exercise of this consent. The Hauraki District Council shall consult with the Waikato Regional Council prior to approving the Dewatering and Settlement Monitoring Plan. The consent holder shall review and update (as necessary) the Plan and shall provide promptly such updated Plan to the Hauraki District Council annually for approval.



- c) If in the opinion of Hauraki District Council the dewatering adversely affects land or facilities, then the consent holder shall at its own cost be responsible for reinstating the facilities to an equivalent standard to the reasonable satisfaction of Council.
- d) The consent holder shall measure and record the daily volume of water abstracted from the pit.
- e) The consent holder shall undertake monthly water level monitoring of the piezometer network in accordance with the Dewatering and Settlement Monitoring Plan.
- f) The consent holder shall monitor ground settlement at a minimum of six monthly intervals in accordance with the Dewatering and Settlement Monitoring Plan.
- g) In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations spaced no less than 25 metres apart, and such tilt is caused by mine dewatering, or there is a significant variance from the predicted settlement rates described in the evidence of Dr Semple (Table 5, Figure 8 dated 13 November 1997 as presented to the Joint Hearing Committee attached hereto as Appendix C), the consent holder shall notify the Hauraki District Council and the Waikato Regional Council, in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:
  - explain the cause of the non-conformance,
  - agree with the Hauraki District Council and Waikato Regional Council on the appropriate settlement contingency measures to be implemented as described,
  - implement settlement contingency measures as appropriate,
  - advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.
- h) The consent holder shall provide to the Hauraki District Council and the Waikato Regional Council an annual dewatering and settlement monitoring report. The report shall include at least the following information:
  - The data from monitoring undertaken during the previous year including ground water contour plans (derived from the data) in respect of the piezometer network.
  - Identification of any environmentally important trends in settlement and dewatering behaviour.
  - Interpretation and analysis of any change in ground water profile over the previous year, any contingency actions that may have been taken during the year, predictions of future impacts on other bore users that may arise as a result of any trends that have been identified, and what contingency actions, if any, the consent holder proposes to take in response to those predictions.
  - A comparison of the settlement survey data with that predicted in Table 5 and Figure 8 (dated 13 November 1997) by Dr Semple of Woodward Clyde (NZ) Ltd as provided in evidence to the Joint Hearing Committee.
  - Comment on compliance with this condition.
  - A summary and analysis of complaints relevant to this condition.
  - Any reasons for non-compliance or difficulties in achieving conformance with this condition.
  - Any works that have been undertaken to improve environmental performance or that are proposed to be undertaken in the forthcoming year to improve environmental performance in relation to activities permitted by this condition.



The report shall be forwarded in a format acceptable to the Hauraki District Council.

(Note: This condition is complementary to Waikato Regional Council consent number 971286).

# Extract from conditions of Hauraki District Council Resource Consent RC-15735, as pertaining to Dewatering and Settlement:

## **Dewatering and Settlement Monitoring Plan**

14. Within 2 months of the exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system, as proposed in the consent application. The monitoring regime shall be designed to assess the effects of:

- (i) dewatering on the regional groundwater system; and
- (ii) dewatering on settlement.

Final details of the monitoring locations are to be agreed with the Council. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed and updated as necessary by the consent holder. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version.

In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

#### **Dewatering and Settlement Monitoring Report**

- 15. The consent holder shall provide to the Council an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:
  - (i) The volume of groundwater abstracted;
  - (ii) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
  - (iii) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information.
  - (iv) Any contingency actions that may have been taken during the year; and
  - (v) Comment on compliance with condition 14 of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

The report shall be forwarded in a form acceptable to the Council.

## Monitoring - Tilt

16. In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations installed in accordance with the De-watering and Settlement Monitoring Plan required pursuant to condition 14 of this consent, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Hauraki District and Waikato Regional Councils in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:



- (i) Explain the cause of the non-conformance,
- (ii) Agree with the Councils on the appropriate settlement contingency measures to be implemented as described,
- (iii) Implement settlement contingency measures as appropriate,
- (iv) Advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

Extract from conditions of Waikato Regional Council Resource Consents 121416, 121417, 121418, 121446, and 121447, pertaining to Dewatering and Settlement:

#### SCHEDULE ONE - GENERAL CONDITIONS

Resource Consents 121416, 121417, 121418, 121446, and 121447 are subject to the following general conditions, which are applicable to all consents.

### **Dewatering and Settlement Monitoring Plan**

Prior to exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system, as proposed in the consent application. The monitoring regime shall be designed to assess the effects of:

- (i) dewatering on the regional groundwater system; and
- (ii) dewatering on settlement, and
- (iii) the discharge of degraded quality water from the backfilled and flooded workings on groundwater quality.

Final details of the monitoring locations are to be agreed with the Council. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed and updated as necessary by the consent holder. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version.

In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

### **Dewatering and Settlement Monitoring Report**

- 6. The consent holder shall provide to the Councils an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:
  - (i) The volume of groundwater abstracted;
  - (ii) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
  - (iii) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis



- shall be undertaken by a party appropriately experienced and qualified to assess the information:
- (iv) Any contingency actions that may have been taken during the year; and
- (v) Comment on compliance with condition 5 of this schedule including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

The report shall be forwarded in a form acceptable to the Council.

## Monitoring - Tilt

- 7. In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations installed in accordance with the De-watering and Settlement Monitoring Plan required pursuant to condition 5 of this schedule, and such tilt is caused by the de-watering and/or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Councils in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then engage in a process with the Councils:
  - (i) explain the cause of the non-conformance,
  - (ii) agree with the Councils on the appropriate settlement contingency measures to be implemented as described,
  - (iii) implement settlement contingency measures as appropriate,
  - (iv) advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

## Extract from conditions of Mining Licence 32 2388, pertaining to Dewatering and Settlement:

#### Dewatering

- 11. (a) The licensee shall prepare a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of dewatering associated with the extended project on land settlement and the effects of the mining activities on the subsurface hydraulic regime. The Dewatering and Settlement Monitoring Plan shall address at least the following:
  - (i) An overall description of the groundwater and settlement monitoring system and the measures to be adopted to meet the objectives of the groundwater and settlement monitoring system.
  - (ii) Details of the piezometer network proposed to monitor the effects of pit dewatering on the aguifers under Waihi township.
    - Any monitoring bores additional to the existing piezometer network shall be installed and operational prior to the commencement of the extended project.
  - (iii) Details of the settlement monitoring network proposed to monitor the extended zone which has been, or is likely to be, affected by settlement caused by mine dewatering.
    - Any settlement monitoring network locations additional to the existing monitoring locations shall be installed and operational prior to the commencement of the extended project.
  - (iv) Details of the survey of facilities in the Waihi township considered by the licensee to be potentially "at risk" of damage from ground settlement caused by mine dewatering. The survey to be completed shall include collection of information about the facility's location, the nature of construction materials, the nature of sensitive equipment that might be potentially "at risk", and the sensitivity of this equipment to ground settlement caused by mine dewatering and/or tilt.
    - This survey shall be completed prior to the commencement of the extended project.
  - (v) A settlement contingency plan to include mitigation measures to be implemented in the event that ground settlement caused by mine dewatering induces a tilt that exceeds 1 in 1000 between any two network monitoring locations spaced no less than 25 metres apart. The settlement contingency plan shall particularly address those facilities identified by the licensee as being potentially "at risk" of damage from ground settlement caused by mine dewatering.



(vi) A dewatering contingency plan that describes the steps the licensee shall implement in the event that dewatering results in adverse impacts on affected aquifer systems and associated groundwater supplies used for domestic, stock or other purposes.

In detailing the monitoring programmes the licensee shall provide information on the monitoring methods proposed, the parameters to be monitored, and the calibration and maintenance of monitoring equipment.

In the event of any conflict or inconsistency between these conditions and the provisions of the Dewatering and Settlement Monitoring Plan, these conditions shall prevail.

- (b) The Dewatering and Settlement Monitoring Plan shall be submitted to the Minister for approval at least one month prior to the commencement of the extended project. The licensee shall review and update (as necessary) the Plan and shall provide promptly such updated Plan to the Minister annually for approval.
- (c) If in the opinion of the Minister the dewatering adversely affects land or facilities, then the licensee shall at its own cost be responsible for reinstating the facilities to an equivalent standard to the reasonable satisfaction of the Minister.
- (d) The licensee shall measure and record the daily volume of water abstracted from the pit.
- (e) The licensee shall undertake monthly water level monitoring of the piezometer network in accordance with the Dewatering and Settlement Monitoring Plan.
- (f) The licensee shall monitor ground settlement at a minimum of six monthly intervals in accordance with the Dewatering and Settlement Monitoring Plan.
- (g) In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations spaced no less than 25 metres apart, and such tilt is caused by mine dewatering, or there is a significant variance from the predicted settlement rates described in the evidence of Dr Semple (Table 5, Figure 8 dated 13 November) the licensee shall notify the Minister, in writing, within 20 working days of receiving the results of the monitoring. The licensee shall then:
  - Explain the cause of the non-conformance:
  - Agree with the Minister on the appropriate settlement contingency measures to be implemented as described;
  - Implement settlement contingency measures as appropriate;
  - Advise the Minister on the steps the licensee proposes to take in order to prevent any further occurrence of the situation.
- (h) The licensee shall provide to the Minister an annual dewatering and settlement monitoring report. The report shall include at least the following information:
  - The data from monitoring undertaken during the previous year including ground water contour plans (derived from the data) in respect of the piezometer network;
  - Identification of any environmentally important trends in settlement and dewatering behaviour;
  - Interpretation and analysis of any change in groundwater profile over the previous year, any contingency actions that may have been taken during the year, predictions of future impacts on other bore users that may arise as a result of any trends that have been identified, and what contingency actions, if any, the licensee proposes to take in response to those predictions;
  - A comparison of the settlement survey data with that predicted in Table 5 and Figure 8 (dated 13 November 1997 by Dr Semple of Woodward Clyde (NZ) Ltd);
  - Comment on compliance with this condition;
  - A summary and analysis of complaints relevant to this condition;

Doc ref: WAI-200-REP-007-004



- Any reasons for non-compliance or difficulties in achieving conformance with this condition;
- Any works that have been undertaken to improve environmental performance or that are proposed to be undertaken in the forthcoming year to improve environmental performance in relation to activities permitted by this condition;
- The report shall be forwarded in a format acceptable to the Minister.



# Extract from conditions of Hauraki District Council Resource Consent 202.2012 (Correnso), as pertaining to Dewatering and Settlement:

### **Dewatering and Settlement Monitoring Plan**

- 27 The objectives of the groundwater and settlement management system shall be to ensure that dewatering operations do not give rise to surface instability and differential settlement beyond that authorised by this consent.
- Within 2 months of the exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.
- The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system set out in Condition 27. The monitoring regime shall be designed to assess the effects of:
  - a) Dewatering on the regional groundwater system; and
  - b) Dewatering on settlement.
- Monitoring locations are to provide appropriate resolution of groundwater levels and surface tilt relative to the scale of surface infrastructure, particularly in the areas above and adjacent to the mining activities provided for in this consent. Final details are to be agreed with the Council. The Plan shall also provide settlement trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.
- The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed and updated as necessary by the consent holder. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version.
- In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations installed in accordance with the Dewatering and Settlement Monitoring Plan required pursuant to Condition 28 of this consent, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Hauraki District and Waikato Regional Councils in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then:
  - a) Explain the cause of the non-conformance;
  - b) Propose appropriate settlement contingency measures to the Councils and the timing of implementation thereof by the consent holder;
  - c) Implement settlement contingency measures as appropriate within the agreed time limit;
  - d) Advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.
- The consent holder shall as a matter of urgency, advise the Council of any significant anomalies identified by the regular (monthly) reading of groundwater levels in the piezometer network. Such advice is to include an explanation of the anomalous results and actions proposed to address any issues identified. This report is to be provided to the Council within 10 working days of the anomalous results being identified.
  - A "significant anomaly" is defined as 15m or more offset occurring in piezometer recordings over a 1 month period.
- In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

Advice notes:



- The Dewatering and Settlement Monitoring Plan shall be consistent with the Dewatering and Settlement Monitoring Plan prepared as a condition of the ground dewatering consent (RC 124860) granted by the Waikato Regional Council.
- The monitoring undertaken in terms of the Dewatering and Settlement Monitoring Plan may need to be continued for a period beyond the term of this consent depending on recharge of the groundwater following cessation of underground mining activities and the filling of the Martha Pit.

## **Dewatering and Settlement Monitoring Report**

- The consent holder shall provide to the Council an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:
  - a) The volume of groundwater abstracted;
  - b) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
  - c) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information;
  - d) Any contingency actions that may have been taken during the year; and
  - e) Comment on compliance with Conditions 27 to 34 of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

The report shall be forwarded in a form acceptable to the Council.

#### Advice note:

The Dewatering and Settlement Monitoring Report shall be consistent with the Dewatering and Settlement Monitoring Report prepared as a condition of the ground dewatering consent (RC 124860) granted by the Waikato Regional Council.



## Extract from conditions of Waikato Regional Council Resource Consent 124860, pertaining to Dewatering and Settlement:

## **Monitoring - Abstraction Volume**

4. The consent holder shall monitor the volume of water abstracted on a weekly basis and shall report this to the Waikato Regional Council on a quarterly basis.

## **Dewatering and Settlement Monitoring Plan**

5. Prior to the exercise of this consent, the consent holder shall prepare, and submit to the Council for its written approval, a Dewatering and Settlement Monitoring Plan. The purpose of this Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.

The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system, as proposed in the consent application. The monitoring regime shall be designed to assess the effects of:

- (i) dewatering on the regional groundwater system; and
- (ii) dewatering on settlement; and
- (iii) the discharge of degraded quality water from the backfilled and flooded workings on groundwater quality.

Monitoring locations are to provide appropriate resolution of surface tilt relative to the scale of surface infrastructure and final details are to be agreed with the Councils. The Plan shall also provide trigger limits that will initiate the implementation of contingency mitigation and/or monitoring measures and shall detail any linkages with the Martha pit operation.

The exercise of this consent shall be in accordance with the Plan as approved by the Council. The Plan shall be reviewed and updated as necessary by the consent holder. Such updated Plans shall relate to the Correnso Mine or to any new mine within Area L. Any updated Plan shall be promptly forwarded to the Council for written approval and following approval, the updated Plan shall be implemented in place of the previous version.

In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

## **Dewatering and Settlement Monitoring Report**

- 6. The consent holder shall provide to the Councils an annual Dewatering and Settlement Monitoring Report. The Report shall, as a minimum, provide the following information:
  - (i) The volume of groundwater abstracted;
  - (ii) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;
  - (iii) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions. This analysis shall be undertaken by a party appropriately experienced and qualified to assess the information;
  - (iv) Any contingency actions that may have been taken during the year; and
  - (v) Comment on compliance with condition 5 of this consent including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

The report shall be forwarded in a form acceptable to the Councils.



## **Monitoring - Tilt**

- 7. In the event that a tilt greater than 1 in 1000 occurs between any two network monitoring locations installed in accordance with the Dewatering and Settlement Monitoring Plan required pursuant to condition 5 of this consent, and such tilt is caused by the de-watering and/or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Councils in writing, within 20 working days of receiving the results of the monitoring. The consent holder shall then engage in a process with the Councils:
  - (i) explain the cause of the non-conformance,
  - (ii) Propose appropriate settlement contingency measures for discussion with Councils and agree with the Councils on the appropriate settlement contingency measures and the timing for their implementation as described,
  - (iii) implement agreed settlement contingency measures as appropriate within the agreed time limit,
  - (iv) advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.

## Monitoring - Water Quality

8. The consent holder shall monitor throughout the period of operation, the chemistry of the groundwater, pit run-off and pit discharge water abstracted from the open pit. The monitoring data is to be used to correlate these inflows with pit lake water quality predictions, and to provide a database for input into the closure plans. The sampling parameters and frequencies shall be described in the Martha Extended Project dewatering consent (unless agreed otherwise with the Waikato Regional Council) with the results forwarded to the Waikato Regional Council on an annual basis.

#### **Other Water Users**

9. If, in the opinion of the Waikato Regional Council, the exercise of this consent adversely affects stock, domestic or other water supplies, then the consent holder shall, at its own cost, be responsible for providing to the owner of those water supplies an alternative equivalent water supply, to the satisfaction of Waikato Regional Council. The consent holder shall be responsible for making an alternative water supply available within 12 hours of being directed to do so by the Waikato Regional Council.

# Extract from conditions of Waikato Regional Council Resource Consent 124861, pertaining to Dewatering and Settlement:

#### **Groundwater Monitoring**

5. Piezometers shall be installed at sites to be approved by the Waikato Regional Council for the purpose of monitoring changes in groundwater arising from the exercise of this consent. The groundwater monitoring system shall be detailed in the dewatering and Settlement Monitoring Plan, prepared pursuant to condition 5 of consent number 124860.

## Extract from common conditions of Hauraki District Council and Waikato Regional Council Resource Consent for Project Martha (202.2018), as pertaining to Dewatering and Settlement:

#### **Dewatering and Settlement Monitoring Plan**

- The objectives of the groundwater and settlement management system shall be to ensure that dewatering operations do not give rise to surface instability and differential settlement beyond that authorised by this consent.
- Two months prior to dewatering below 700 m RL (mine datum), the consent holder shall prepare, and submit to the Councils for their certification, a Dewatering and Settlement Monitoring Plan. The purpose of the Dewatering and Settlement Monitoring Plan is to monitor and assess the effects of the activities on land settlement and the groundwater hydraulic regime, and also to detail the contingency measures that will be actioned should groundwater or surface settlement triggers be exceeded.



- The Plan shall, as a minimum, provide an overall description of the groundwater and settlement monitoring system and the measures to be adopted, including contingency measures, to meet the objectives of the groundwater and settlement management system set out in Condition 14 of this schedule. The monitoring regime shall be designed to assess the effects of:
  - a. Dewatering on the regional groundwater system; and
  - b. Dewatering on settlement.
- Monitoring locations are to provide appropriate resolution of mine inflows and pumping, groundwater levels (both for shallow and deep aquifers) and ground surface tilt relative to the scale of surface infrastructure, throughout the area within the maximum extent of the groundwater cone of depression and particularly in the areas above and adjacent to the mining activities provided for in this consent. Final details are to be agreed with the Councils, but are to include additional piezometers and extensometers located along the line of upper level workings in the Rex Orebody. The Dewatering and Settlement Monitoring Plan shall also provide groundwater and settlement trigger limits that will initiate the implementation of contingency mitigation and / or monitoring measures and shall detail any linkages with the operation of the Martha Pit and Martha Underground Mine.
- The exercise of this consent shall be in accordance with the Dewatering and Settlement Monitoring Plan as certified by the Councils. The Dewatering and Settlement Monitoring Plan shall be reviewed and updated as necessary by the consent holder. Any updated Dewatering and Settlement Monitoring Plan shall be promptly forwarded to the Councils for certification, and following this process, the updated plan shall be implemented in place of the previous version.
- In the event that a tilt greater than 1 in 1,000 occurs between any two network monitoring locations installed in accordance with the Dewatering and Settlement Monitoring Plan required pursuant to Condition 15 of this schedule, or there is a significant variance from the predicted settlement rates, the consent holder shall notify the Councils in writing within 20 working days of receiving the results of the monitoring. The consent holder shall then:
  - a. Explain the cause of the non-conformance;

#### 15.1.1

b. Propose appropriate settlement contingency measures to the Councils and the timing of implementation thereof by the consent holder;

#### 15.1.2

c. Implement settlement contingency measures as appropriate within the agreed time limit; and

## 15.1.3

- d. Advise the Councils on the steps the consent holder proposes to take in order to prevent any further occurrence of the situation.
- 17 The consent holder shall as a matter of urgency, advise the Councils of any significant anomalies identified by the regular reading of groundwater levels in the piezometer network. Such advice is to include an explanation of the anomalous results and actions proposed to address any issues identified. This report is to be provided to the Councils within 10 working days of the anomalous results being identified.

A "significant anomaly" is defined as a drop in groundwater level greater than the seasonal variation in piezometers within the alluvium and younger volcanic rocks and a drop of 15 m or more in the recordings from piezometers tapping the upper 50 m of Andesite over a one month period.



In the event of any conflict or inconsistency between the conditions of this consent and the provisions of the Dewatering and Settlement Monitoring Plan, then the conditions of this consent shall prevail.

#### Advice Note:

The monitoring undertaken in terms of the Dewatering and Settlement Monitoring Plan may need to be continued for a period beyond the term of this consent depending on recharge of the groundwater following cessation of underground mining activities and filling of the Martha Pit.

## **Dewatering and Settlement Monitoring Report**

- The consent holder shall provide to the Councils (within one month of an agreed anniversary date) an annual Dewatering and Settlement Monitoring Report. The report shall, as a minimum, provide the following information:
  - g) The volume of groundwater abstracted;

#### 15.1.4

h) The data from monitoring undertaken during the previous year, including groundwater contour plans (derived from the data) in respect of the piezometer network;

#### 15.1.5

i) An interpretation and analysis of the monitoring data, in particular any change in the groundwater profile over the previous year, predictions of the future impacts that may arise as a result of any trends that have been identified including review of the predicted post closure effects based on actual monitoring data, and what contingency actions, if any, the consent holder proposes to take in response to those predictions, this analysis shall be undertaken by a party appropriately experienced and qualified to assess the information:

#### 15.1.6

j) Any contingency actions that may have been taken during the year; and

#### *15.1.7*

k) Comment on compliance with Conditions 14 to 21 of this schedule including any reasons for non-compliance or difficulties in achieving conformance with the conditions of consent.

#### 15.1.8

The report shall be forwarded in a form acceptable to the Councils.



#### **MEMORANDUM**

TO: MARK BURROUGHS, KATHY MASON

FROM: BRUCE MORRISON

DATE: **30<sup>TH</sup> JUNE 2021** 

SUBJECT: GROUND SETTLEMENT MONITORING –MAY 2021

#### Introduction

This report outlines the results from the May 2021 Ground Settlement Monitoring Survey.

#### **Field Method**

The settlement monitoring marks were levelled during May and June 2021 for OceanaGold by myself utilising an experienced *Kauri Gold* assistant under my supervision. An experienced contract surveyor assisted with the baseline levelling on the State Highways when a shadow vehicle was used to satisfy the roading authorities.

Equipment used was a LEICA DNA03 electronic digital level paired with a **new** LEICA 3 section 4.05 metre fibreglass bar coded GKNL4F staff. To minimise 'windage', the staff was used in 2 section 'mode'. The level was serviced and check calibrated by the supplier in March 2021. A field calibration check was carried out by myself before commencing this event and the check result was satisfactory.

Benchmarks AP19 to BUH5 were treated as fixed and the -38.7 mm level misclose distributed. A level run was then taken off this base line from 34BE south to C1 and this -9.2 mm misclose distributed. Control mark C1 was established and levelled during the November 2019 levelling event. The remaining monitoring marks were levelled from these baselines and adjusted using LEICA LEVELPAK-PRO software.

A summary of the above framework 'misclosures' for the last twenty-nine events is tabulated below.

| Event    | West –East misclose (mm) | North –South misclose (mm) |  |  |
|----------|--------------------------|----------------------------|--|--|
|          | AP2 > 34BE > AP1         | 34BE > AP6                 |  |  |
| May 2007 | +2.4                     | +6.4                       |  |  |
| Nov 2007 | +2.7                     | +3.1                       |  |  |
| May 2008 | +13.2                    | +4.0                       |  |  |
| Nov 2008 | -8.1                     | +7.3                       |  |  |
| May2009  | +8.8                     | +3.7                       |  |  |
| Nov 2009 | -5.8                     | +2.0                       |  |  |
| May 2010 | -8.1                     | +4.3                       |  |  |
| Nov 2010 | -0.6                     | +6.4                       |  |  |
| May 2011 | +2.0                     | +2.7                       |  |  |
| Nov 2011 | +6.9                     | +6.5                       |  |  |

Page 110 of 161 110

| May 2012   | +4.1                        | +6.7               |  |
|------------|-----------------------------|--------------------|--|
| Nov 2012   | +23.3                       | +5.3               |  |
| May 2013   | +2.7                        | +9.5               |  |
| Nov 2013   | -0.9                        | +4.5               |  |
| May 2014   | -1.1                        | +11.5              |  |
| Nov 2014   | -2.6                        | +7.0               |  |
| May 2015   | +1.6                        | +6.3               |  |
| Nov 2015   | -8.0                        | +10.3              |  |
| May 2016   | +9.2                        | +12.2              |  |
|            | AP20 No 2 >AP2 > 34BE > AP1 | 34BE > AP6         |  |
| Nov 2016   | +14.2                       | +3.6               |  |
|            | AP19 >AP2 > 34BE > AP1      | 34BE > AP6         |  |
| May 2017   | +1.0                        | +0.4               |  |
| Nov 2017   | -10.2                       | -0.5               |  |
| May 2018   | +6.4                        | +4.0               |  |
| Nov 2018   | -11.1                       | +3.6               |  |
|            | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP6         |  |
| May 2019   | See page 2                  | See page 2         |  |
|            | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP6         |  |
| May 2019   | -7.9                        | -6.9               |  |
|            | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP24A> 34BE |  |
| Nov 2019   | +0.3                        | -1.3               |  |
|            | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP24A> C1   |  |
| May 2020   | -5.5                        | -1.7               |  |
| Nov 2020   | -3.2                        | -2.5               |  |
| May2021    | -38.7                       | -9.2               |  |
| iviay202 i | -30.1                       | -3.2               |  |

# **Extending Levelling**

This levelling event included LINZ benchmarks AP2, AP20 No 2, AP19, (to the west of Waihi), AP1 and BUH5 (to the east of Waihi). AP24 a.k.a control mark AP6 (south of Waihi) has been lost to road works. AP24A and C1 have been established as a replacement for the lost AP6 control mark in this vicinity. AP2 and AP20 No 2 have now been 'unfixed' and AP19 is the fixed benchmark west of Waihi. The 'fixed' elevation value for AP19 was deduced from LINZ data comparing the relative levels of AP19, AP2, AP20 No2, and AP24 dating back to the year 1990. East of Waihi, AP1 is now 'unfixed. The R.L. for the 'new' fixed eastern control mark (BUH5) was the mean value from two close values (relative to AP1) levelled in May 2018 and Nov 2018.

Page 111 of 161 111

#### Levelling for November 2021?

The relatively large misclose of -38.7 mm on the baseline AP19 to BUH5 is a feature of this levelling event. This misclose caused me to check the 'old' staff against the new staff – to find the following:

between two marks using the new staff the difference was 1.84774 metres then 1.84866 metres using the 'old' staff. This 0.92 millimetres is just measurable with a 5 metre builders steel tape across the 2 pieces of the 'old' and new staffs and confirmed the new staff was consistent with the steel builders tape. This -0.00092 metre difference (over say 2 metres vertical) probably accounts for some of -0.0387 metre misclose. Note the elevation difference used between 'control' marks AP19 and BUH5 is 59.2636 metres.

(59.2636/2)\*(-0.00092) = -.02726

The -ve change in reduced levels on higher elevations (particularly on the north side of the pit) using the new staff is consistent with the above discussion.

The baseline misclose for the next levelling event will be of much interest and may provide some basis for minor adjustments to the elevations of the 'control' marks.

# **Photographs**

The order of levelling of the monitoring points has now been fixed. This has been achieved by photographing all of the settlement points and placing them in 22 albums –generally in the order the points are to be levelled. This will achieve repeatable error distribution and should therefore give better results. I believe **all** the marks now have accurate GPS fixes. In the future, this should make the task of locating these marks easier if the marks are covered over by re-seal etc, or quickly confirm if the marks have definitely been 'lost' to street maintenance etc.

I recommend continuing these 'maintenance' details before or during the next levelling event.

# **Adjustments**

Disturbed marks BM20 and 2.44 are excluded from the settlement contouring- as are marks F18, F20, F23, F24, and F25. Mark 2.28 has been disturbed by residential construction activity. Mark 1QC was 'missed' owing to a large stockpiles of road gravel over it. Mark 1.02C has been lost to street works and new mark 1.02D established. Mark 2.11B has been lost to land redevelopment. All the above marks are excluded from the settlement contouring.

### Results

One A1 plan is attached -colour coded by seven zones as identified in the 'Settlement and Groundwater Monitoring Plan.' Relative to previous plans, the Zone boundaries and 'trigger' settlement values have been modified to match *Engineering Geology Ltd* Drawing No. 8332-Fig 16.

This plan "Total Settlement Contours" (T20210701A) identifies all marks (in black and brown) that have been used to produce the contours for the plan. The plan shows total movement (in millimetres) at the monitoring mark itself. Missed, 'lost', or disturbed marks are shown in red and these marks are not used for contouring. New marks are also shown in red and generally not used for settlement contouring until the next levelling event.

This plan also displays settlement contours in 20mm intervals. The Settlement and Groundwater Monitoring Plan identifies gradients steeper than 1:1000 to be cause for concern. BM20 has been a large mover in the past and has been identified in past surveys as being placed on shrinking material. There are no buildings in

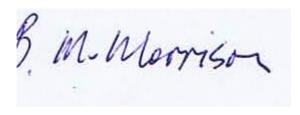
Page 112 of 161 112

this area anymore. I understand (from Mark Halloran) BM20A was placed near BM20 with a 'foot' bedded in firm ground. Significant differential settlement (1:124) is now occurring between BM20A and BM20 –sufficient to decide to omit BM20 from the settlement 'contour' calculation.

These contours represent the total negative (–ve) movement (or settlement) around Waihi since monitoring began. Positive contours are not shown. In the past, small consistent ground 'rises' have been associated with the sector north of the pit. However with the new staff -only the mark with the highest elevation (BM28/2) shows a +11.3 millimetre) rise.

The closest contours (omitting disturbed marks) are between marks 20AC and BM20A. The distance between these marks using GPS measurements, calculates at 126.706 metres, and show 0.1796 metres of relative vertical movement to give a gradient of 1:705. The distance between marks BM20A and 20D using GPS measurements, calculates at 137.047 metres, and shows 0.1572 metres of relative vertical movement to give a gradient of 1:871. The distance between marks 20C and BM20A, when checked by GPS measurements, calculates at 126.865 metres, and show 0.1244 metres of relative vertical movement to give a gradient of 1:1020.

Some cracks are visible in the sealed pavements in this area of closest contours.


Table 1 (pages 3-12) lists all the marks used for this settlement levelling event with the marks sorted first by Zone and then by settlement value. Marks that record 'exceedences' in terms of zone predictions (for Martha (2019) are highlighted with colour and have comments attached. All marks that 'exceeded' in Table 1 were analysed further and field inspections were conducted where required.

The comments included below attempt to explain the probable reason for 'excess' movement. The comments are *Dist'd* for BM20 in Zone 6. In Zone 4, the comment is '*Nr watercourse'* for 23C. The swampy(?) ground may have de-watered during the autumn drought. For Zone 3, 2CE is near Zone 5. For Zone 1, 2.44 is *Dist'd*, 2.05 is near Zone 5, 2.35, 31DD and 31FC.are near Zone 3, and 31KC, 31LC, 31MD, and 31NE are near the Ohinemuri River bridge.31HC is near 31KC. 31GC is near 31DD.

The 'Favona' marks were installed for monitoring the effects of dewatering in the original underground mine area. The underlying original 'Martha' zone was Zone 3 and but the Favona marks were never given zone exceedence parameters in terms of the original Martha zones. The Favona marks all report significant settlement. Note marks F18, F20, F23, F24, F25 are tentatively labelled as 'Dist'd' and not used for contouring the settlement.

The five extra 'Favona' settlement marks are again shown on the plan. These are FP1, BLOCK-S, BLOCK-N, TRIG 22, and TRIG 24. The settlements for these marks have generally been deduced relative to original reduced levels measured around the year 1987 –although FP1 (at the Favona portal) was established about the year 2000. Favona mark F07 is disturbed but has been relabelled as F07A. A 'previous history' has been calculated for F07A so this mark can be used for settlement contouring. The underlying zone for the Favona marks is now Zone 5 Martha (2019).

I understand that Time-History plots for all survey marks grouped by zone will be produced by other persons in accordance with the "Settlement and Groundwater Monitoring Plan 31 July 2005"



Page 113 of 161 113

**Bruce Morrison** 

# Registered Professional Surveyor

Table 1. Total Movement

|       |              | SURVEY    |         |          | TOTAL   | SETTLEMENT |          |
|-------|--------------|-----------|---------|----------|---------|------------|----------|
| Zone  | station i.d. | DATE      | X       | Υ        | Z       | May-21     | Comments |
| Zone7 | BM19B        | 1/05/2021 | 2117.17 | 1244.36  | 35.5558 | -0.3102    |          |
| Zone7 | 19BB         | 1/05/2021 | 2191.56 | 1292.022 | 35.5513 | -0.3065    |          |
| Zone7 | 17CB         | 1/05/2021 | 2014.23 | 1201.01  | 35.4869 | -0.2867    |          |
| Zone6 | BM20         | 1/05/2021 | 2342.50 | 1476.25  | 35.6043 | -0.3765    | Dist'd   |
| Zone6 | BM20A        | 1/05/2021 | 2345.50 | 1484.901 | 35.7747 | -0.3025    |          |
| Zone6 | 19CB         | 1/05/2021 | 2296.71 | 1381.4   | 34.9425 | -0.2874    |          |
| Zone6 | 17BB         | 1/05/2021 | 1919.52 | 1160.787 | 37.3808 | -0.2502    |          |
| Zone6 | 17AB         | 1/05/2021 | 1841.32 | 1104.802 | 36.8988 | -0.2165    |          |
| Zone6 | 34GC         | 1/05/2021 | 2211.33 | 1119.517 | 32.1496 | -0.2022    |          |
| Zone6 | 2.04B        | 1/05/2021 | 1893.21 | 968.34   | 29.1084 | -0.1824    |          |
| Zone6 | 34H          | 1/05/2021 | 2233.59 | 970.56   | 32.1707 | -0.1764    |          |
| Zone6 | 18EE         | 1/05/2021 | 1750.73 | 809.328  | 23.4501 | -0.1713    |          |
| Zone6 | 2.10         | 1/05/2021 | 2143.92 | 950.387  | 30.2978 | -0.1711    |          |
| Zone6 | 18C          | 1/05/2021 | 1494.95 | 767.193  | 27.4848 | -0.1701    |          |
| Zone6 | 18IB         | 1/05/2021 | 1611.19 | 784.79   | 25.8477 | -0.1677    |          |
| Zone6 | 34AD         | 1/05/2021 | 1470.88 | 886.92   | 29.7795 | -0.1673    |          |
| Zone6 | 34BE         | 1/05/2021 | 1732.56 | 931.603  | 28.3509 | -0.1558    |          |
| Zone6 | 34C          | 1/05/2021 | 1968.90 | 982.673  | 30.1225 | -0.1474    |          |
| Zone6 | BM34         | 1/05/2021 | 1528.38 | 903.297  | 30.3359 | -0.1472    |          |
| Zone6 | 10BC         | 1/05/2021 | 1560.13 | 1062.92  | 38.1213 | -0.1463    |          |
| Zone6 | 11AC         | 1/05/2021 | 1308.26 | 859.512  | 29.3547 | -0.1422    |          |
| Zone6 | 10AB         | 1/05/2021 | 1430.61 | 1036.998 | 35.014  | -0.139     |          |
| Zone6 | 18AB         | 1/05/2021 | 1632.39 | 667.73   | 22.1568 | -0.1346    |          |
| Zone6 | BM17A        | 1/05/2021 | 1724.44 | 1088.919 | 40.0546 | -0.1336    |          |
| Zone6 | 2.08B        | 1/05/2021 | 2289.75 | 782.64   | 24.5543 | -0.1321    |          |
| Zone6 | 1.28B        | 1/05/2021 | 1987.03 | 447.71   | 12.1199 | -0.1250    |          |
| Zone6 | 2.09C        | 1/05/2021 | 2228.35 | 868.63   | 28.6615 | -0.1224    |          |

| Zone6         34I         1/05/2021         2229.55         765.534         28.4843         -0.1139           Zone6         2.06         1/05/2021         2351.95         334.473         11.3002         -0.1015           Zone6         2.11B         1/05/2021         2258.66         862.45         LOST         1 lost           Zone5         20C         1/05/2021         2450.61         1413.86         36.3293         -0.1781           Zone5         A10B         1/05/2021         2573.96         1304.152         30.7017         -0.1661           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         16BC         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         210         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.                                                                                                                                 | Zone6 | 34FC  | 1/05/2021 | 2120.79 | 587.93   | 19.0839 | -0.1221 |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|---------|----------|---------|---------|------|
| Zone6         2.11B         1/05/2021         2278.86         862.45         LOST         1         lost           Zone5         20C         1/05/2021         2450.61         1413.86         36.3293         -0.1781           Zone5         A10B         1/05/2021         1298.62         1049.61         30.7017         -0.1661           Zone5         21DC         1/05/2021         2535.65         1542.672         37.1         -0.1646           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         A11D         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.1543           Zone5         10DC         1/05/2021         2424.91         1100.253 </td <td>Zone6</td> <td>341</td> <td>1/05/2021</td> <td>2229.55</td> <td>765.534</td> <td>28.4843</td> <td>-0.1139</td> <td></td> | Zone6 | 341   | 1/05/2021 | 2229.55 | 765.534  | 28.4843 | -0.1139 |      |
| Zone5         20C         1/05/2021         2450.61         1413.86         36.3293         -0.1781           Zone5         A10B         1/05/2021         1298.62         1049.61         30.7017         -0.1661           Zone5         21DC         1/05/2021         2573.96         1304.152         37.7751         -0.1646           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         16BC         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         210         1/05/2021         1277.04         1017.33         30.866         -0.1574           Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.1543           Zone5         100C         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         210         1/05/2021         2424.91         1100.253                                                                                                                                      | Zone6 | 2.06  | 1/05/2021 | 2351.95 | 334.473  | 11.3002 | -0.1015 |      |
| Zone5         A10B         1/05/2021         1298.62         1049.61         30.7017         -0.1651           Zone5         21DC         1/05/2021         2573.96         1304.152         37.7751         -0.1646           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         16BC         1/05/2021         1252.81         1336.473         39.4679         -0.1596           Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         210         1/05/2021         1277.04         1017.33         30.866         -0.1574           Zone5         25A         1/05/2021         2472.35         1162.013         34.7895         -0.1543           Zone5         25E         1/05/2021         2424.91         1100.23         33.4956         -0.1525           Zone5         10DC         1/05/2021         2424.91         1100.23         33.4956         -0.1525           Zone5         21N         1/05/2021         2632.25         1342.435         <                                                                                                                             | Zone6 | 2.11B | 1/05/2021 | 2278.86 | 862.45   | LOST    | 1       | lost |
| Zone5         21DC         1/05/2021         2573.96         1304.152         37.7751         -0.1646           Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         16BC         1/05/2021         2547.05         1248.02         36.881         -0.1596           Zone5         16BC         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         21O         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         25E         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         21N         1/05/2021         2623.25         1342.435                                                                                                                                      | Zone5 | 20C   | 1/05/2021 | 2450.61 | 1413.86  | 36.3293 | -0.1781 |      |
| Zone5         20E         1/05/2021         2535.65         1542.672         37.1         -0.1608           Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         168C         1/05/2021         1252.81         1336.473         39.4679         -0.1596           Zone5         21O         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         A11D         1/05/2021         2525.31         1203.768         35.9545         -0.1574           Zone5         25A         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         10DC         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         24L         1/05/2021         2761.67         1181.326                                                                                                                                    | Zone5 | A10B  | 1/05/2021 | 1298.62 | 1049.61  | 30.7017 | -0.1651 |      |
| Zone5         25D         1/05/2021         2547.05         1248.02         36.881         -0.1598           Zone5         16BC         1/05/2021         2528.81         1336.473         39.4679         -0.1596           Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         A11D         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25A         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         25E         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         21N         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         25G         1/05/2021         2594.60         1149.415                                                                                                                                | Zone5 | 21DC  | 1/05/2021 | 2573.96 | 1304.152 | 37.7751 | -0.1646 |      |
| Zone5         16BC         1/05/2021         1252.81         1336.473         39.4679         -0.1596           Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         A11D         1/05/2021         1277.04         1017.33         30.866         -0.1574           Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         1279.04         1198.326         35.3159         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         2594.60         1149.415                                                                                                                               | Zone5 | 20E   | 1/05/2021 | 2535.65 | 1542.672 | 37.1    | -0.1608 |      |
| Zone5         210         1/05/2021         2527.37         1356.342         36.0174         -0.1584           Zone5         A11D         1/05/2021         1277.04         1017.33         30.866         -0.1574           Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         1279.04         1198.326         35.3159         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2648.48         123.29.56                                                                                                                               | Zone5 | 25D   | 1/05/2021 | 2547.05 | 1248.02  | 36.881  | -0.1598 |      |
| Zone5         A11D         1/05/2021         1277.04         1017.33         30.866         -0.1574           Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2623.25         1342.435         38.3028         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1399           Zone5         25G         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25B         1/05/2021         2615.91         1190.496                                                                                                                                 | Zone5 | 16BC  | 1/05/2021 | 1252.81 | 1336.473 | 39.4679 | -0.1596 |      |
| Zone5         25A         1/05/2021         2505.13         1203.768         35.9545         -0.1553           Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         2594.60         1149.415         37.6049         -0.1399           Zone5         25G         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2645.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24                                                                                                                               | Zone5 | 210   | 1/05/2021 | 2527.37 | 1356.342 | 36.0174 | -0.1584 |      |
| Zone5         25E         1/05/2021         2472.35         1162.013         34.7895         -0.154           Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         1279.04         1198.326         35.3159         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713                                                                                                                                | Zone5 | A11D  | 1/05/2021 | 1277.04 | 1017.33  | 30.866  | -0.1574 |      |
| Zone5         BM25         1/05/2021         2424.91         1100.253         33.4956         -0.1525           Zone5         10DC         1/05/2021         1279.04         1198.326         35.3159         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         2594.60         1149.415         37.6049         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25E         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2592.57         1269.713         39.3005         -0.137           Zone5         24I         1/05/2021         3269.32         685.398                                                                                                                                | Zone5 | 25A   | 1/05/2021 | 2505.13 | 1203.768 | 35.9545 | -0.1553 |      |
| Zone5         10DC         1/05/2021         1279.04         1198.326         35.3159         -0.1492           Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         2497.67         1105.828                                                                                                                               | Zone5 | 25E   | 1/05/2021 | 2472.35 | 1162.013 | 34.7895 | -0.154  |      |
| Zone5         21N         1/05/2021         2623.25         1342.435         38.3028         -0.1462           Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         BM16         1/05/2021         1418.09         1218.03                                                                                                                                   | Zone5 | BM25  | 1/05/2021 | 2424.91 | 1100.253 | 33.4956 | -0.1525 |      |
| Zone5         20D         1/05/2021         2482.07         1473.478         36.5721         -0.1453           Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         12CE         1/05/2021         1499.92         543.077                                                                                                                                     | Zone5 | 10DC  | 1/05/2021 | 1279.04 | 1198.326 | 35.3159 | -0.1492 |      |
| Zone5         24L         1/05/2021         2761.67         1181.326         39.3353         -0.1429           Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1752.28         551.03                                                                                                                                      | Zone5 | 21N   | 1/05/2021 | 2623.25 | 1342.435 | 38.3028 | -0.1462 |      |
| Zone5         10CB         1/05/2021         1222.46         1025.855         29.7922         -0.1399           Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         2.03         1/05/2021         1930.08         745.943                                                                                                                                      | Zone5 | 20D   | 1/05/2021 | 2482.07 | 1473.478 | 36.5721 | -0.1453 |      |
| Zone5         25G         1/05/2021         2594.60         1149.415         37.6049         -0.1396           Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1499.92         543.077         21.0012         -0.1342           Zone5         18F         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         2.03         1/05/2021         1930.08         745.943 <t< td=""><td>Zone5</td><td>24L</td><td>1/05/2021</td><td>2761.67</td><td>1181.326</td><td>39.3353</td><td>-0.1429</td><td></td></t<>  | Zone5 | 24L   | 1/05/2021 | 2761.67 | 1181.326 | 39.3353 | -0.1429 |      |
| Zone5         25H         1/05/2021         2648.48         1232.956         38.9366         -0.1391           Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1499.92         543.077         21.0012         -0.1342           Zone5         18F         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         34EB         1/05/2021         2073.93         705.952         24.656         -0.1316                                                                                                                                                                                                                        | Zone5 | 10CB  | 1/05/2021 | 1222.46 | 1025.855 | 29.7922 | -0.1399 |      |
| Zone5         25CB         1/05/2021         2615.91         1190.496         38.3124         -0.1389           Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1499.92         543.077         21.0012         -0.1342           Zone5         18F         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         2.03         1/05/2021         1930.08         745.943         22.6116         -0.1318           Zone5         34EB         1/05/2021         2073.93         705.952         24.656         -0.1316                                                                                                                                                                                                                        | Zone5 | 25G   | 1/05/2021 | 2594.60 | 1149.415 | 37.6049 | -0.1396 |      |
| Zone5         25F         1/05/2021         2542.53         1116.24         36.0146         -0.1383           Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1499.92         543.077         21.0012         -0.1342           Zone5         18F         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         2.03         1/05/2021         1930.08         745.943         22.6116         -0.1318           Zone5         34EB         1/05/2021         2073.93         705.952         24.656         -0.1316                                                                                                                                                                                                                                                                                                                                        | Zone5 | 25H   | 1/05/2021 | 2648.48 | 1232.956 | 38.9366 | -0.1391 |      |
| Zone5         24I         1/05/2021         2692.57         1269.713         39.3005         -0.137           Zone5         2.41         1/05/2021         3296.32         685.398         46.28         -0.1364           Zone5         25B         1/05/2021         2497.67         1105.828         34.841         -0.136           Zone5         BM16         1/05/2021         1418.09         1218.03         46.4594         -0.1350           Zone5         12CE         1/05/2021         1499.92         543.077         21.0012         -0.1342           Zone5         18F         1/05/2021         1752.28         551.03         17.3491         -0.1320           Zone5         2.03         1/05/2021         1930.08         745.943         22.6116         -0.1318           Zone5         34EB         1/05/2021         2073.93         705.952         24.656         -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone5 | 25CB  | 1/05/2021 | 2615.91 | 1190.496 | 38.3124 | -0.1389 |      |
| Zone5       2.41       1/05/2021       3296.32       685.398       46.28       -0.1364         Zone5       25B       1/05/2021       2497.67       1105.828       34.841       -0.136         Zone5       BM16       1/05/2021       1418.09       1218.03       46.4594       -0.1350         Zone5       12CE       1/05/2021       1499.92       543.077       21.0012       -0.1342         Zone5       18F       1/05/2021       1752.28       551.03       17.3491       -0.1320         Zone5       2.03       1/05/2021       1930.08       745.943       22.6116       -0.1318         Zone5       34EB       1/05/2021       2073.93       705.952       24.656       -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone5 | 25F   | 1/05/2021 | 2542.53 | 1116.24  | 36.0146 | -0.1383 |      |
| Zone5       25B       1/05/2021       2497.67       1105.828       34.841       -0.136         Zone5       BM16       1/05/2021       1418.09       1218.03       46.4594       -0.1350         Zone5       12CE       1/05/2021       1499.92       543.077       21.0012       -0.1342         Zone5       18F       1/05/2021       1752.28       551.03       17.3491       -0.1320         Zone5       2.03       1/05/2021       1930.08       745.943       22.6116       -0.1318         Zone5       34EB       1/05/2021       2073.93       705.952       24.656       -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone5 | 241   | 1/05/2021 | 2692.57 | 1269.713 | 39.3005 | -0.137  |      |
| Zone5       BM16       1/05/2021       1418.09       1218.03       46.4594       -0.1350         Zone5       12CE       1/05/2021       1499.92       543.077       21.0012       -0.1342         Zone5       18F       1/05/2021       1752.28       551.03       17.3491       -0.1320         Zone5       2.03       1/05/2021       1930.08       745.943       22.6116       -0.1318         Zone5       34EB       1/05/2021       2073.93       705.952       24.656       -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone5 | 2.41  | 1/05/2021 | 3296.32 | 685.398  | 46.28   | -0.1364 |      |
| Zone5       12CE       1/05/2021       1499.92       543.077       21.0012       -0.1342         Zone5       18F       1/05/2021       1752.28       551.03       17.3491       -0.1320         Zone5       2.03       1/05/2021       1930.08       745.943       22.6116       -0.1318         Zone5       34EB       1/05/2021       2073.93       705.952       24.656       -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone5 | 25B   | 1/05/2021 | 2497.67 | 1105.828 | 34.841  | -0.136  |      |
| Zone5     18F     1/05/2021     1752.28     551.03     17.3491     -0.1320       Zone5     2.03     1/05/2021     1930.08     745.943     22.6116     -0.1318       Zone5     34EB     1/05/2021     2073.93     705.952     24.656     -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone5 | BM16  | 1/05/2021 | 1418.09 | 1218.03  | 46.4594 | -0.1350 |      |
| Zone5     2.03     1/05/2021     1930.08     745.943     22.6116     -0.1318       Zone5     34EB     1/05/2021     2073.93     705.952     24.656     -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone5 | 12CE  | 1/05/2021 | 1499.92 | 543.077  | 21.0012 | -0.1342 |      |
| Zone5 34EB 1/05/2021 2073.93 705.952 24.656 -0.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone5 | 18F   | 1/05/2021 | 1752.28 | 551.03   | 17.3491 | -0.1320 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone5 | 2.03  | 1/05/2021 | 1930.08 | 745.943  | 22.6116 | -0.1318 |      |
| Zone5 BM12 1/05/2021 1370.27 607.735 23.9755 -0.1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone5 | 34EB  | 1/05/2021 | 2073.93 | 705.952  | 24.656  | -0.1316 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone5 | BM12  | 1/05/2021 | 1370.27 | 607.735  | 23.9755 | -0.1312 |      |

| Zone5 | 2.02  | 1/05/2021 | 1992.61 | 536.097  | 15.2905 | -0.1311 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone5 | 24CD  | 1/05/2021 | 2603.21 | 987.721  | 34.838  | -0.131  |
| Zone5 | 18B   | 1/05/2021 | 1510.36 | 650.578  | 23.5774 | -0.1296 |
| Zone5 | 251   | 1/05/2021 | 2537.20 | 1045.036 | 34.7036 | -0.1291 |
| Zone5 | 18G   | 1/05/2021 | 1669.05 | 554.602  | 18.4948 | -0.128  |
| Zone5 | 24AC  | 1/05/2021 | 2743.58 | 1218.9   | 40.1077 | -0.1277 |
| Zone5 | 21C   | 1/05/2021 | 2651.57 | 1389.82  | 38.4853 | -0.1269 |
| Zone5 | 24DC  | 1/05/2021 | 2718.29 | 1323.127 | 39.654  | -0.1268 |
| Zone5 | 2A    | 1/05/2021 | 1069.03 | 1111.858 | 23.8167 | -0.1261 |
| Zone5 | 34D   | 1/05/2021 | 2038.90 | 783.43   | 25.3607 | -0.1254 |
| Zone5 | 1.28A | 1/05/2021 | 1888.26 | 505.887  | 13.2309 | -0.1246 |
| Zone5 | 24E   | 1/05/2021 | 2758.43 | 1303.234 | 40.3838 | -0.1243 |
| Zone5 | 13AC  | 1/05/2021 | 1751.98 | 327.376  | 18.6207 | -0.1242 |
| Zone5 | 24F   | 1/05/2021 | 2772.80 | 1257.274 | 40.1495 | -0.1242 |
| Zone5 | 24K   | 1/05/2021 | 2783.89 | 1387.719 | 40.6342 | -0.1237 |
| Zone5 | 22F   | 1/05/2021 | 2815.91 | 1325.407 | 40.2539 | -0.1236 |
| Zone5 | BM24  | 1/05/2021 | 2794.55 | 1279.36  | 40.4202 | -0.1229 |
| Zone5 | 20AC  | 1/05/2021 | 2461.04 | 1536.905 | 37.0362 | -0.1229 |
| Zone5 | BM18  | 1/05/2021 | 1771.96 | 674.53   | 19.4484 | -0.1220 |
| Zone5 | 24G   | 1/05/2021 | 2705.96 | 1170.464 | 39.8213 | -0.1215 |
| Zone5 | 21EB  | 1/05/2021 | 2799.95 | 1429.087 | 41.6529 | -0.1207 |
| Zone5 | 12DC  | 1/05/2021 | 1596.95 | 435.491  | 19.9854 | -0.1201 |
| Zone5 | 24B   | 1/05/2021 | 2667.67 | 1126.40  | 39.4012 | -0.1201 |
| Zone5 | 24H   | 1/05/2021 | 2630.70 | 1072.279 | 36.1749 | -0.1189 |
| Zone5 | 24J   | 1/05/2021 | 2749.39 | 1365.756 | 40.2523 | -0.1188 |
| Zone5 | 13BC  | 1/05/2021 | 1850.36 | 246.59   | 13.743  | -0.1180 |
| Zone5 | 12AC  | 1/05/2021 | 1388.32 | 488.888  | 19.0674 | -0.1177 |
| Zone5 | 15A   | 1/05/2021 | 1204.79 | 818.863  | 28.7913 | -0.1174 |
| Zone5 | 18HC  | 1/05/2021 | 1821.52 | 466.47   | 14.9112 | -0.1167 |
| Zone5 | 21M   | 1/05/2021 | 2694.90 | 1439.648 | 39.2007 | -0.1148 |
| Zone5 | 20BB  | 1/05/2021 | 2533.26 | 1622.291 | 37.8968 | -0.1143 |
| Zone5 | 15BC  | 1/05/2021 | 1169.90 | 708.855  | 26.3535 | -0.1114 |
| Zone5 | 4DB   | 1/05/2021 | 1033.26 | 1550.66  | 32.2669 | -0.1109 |

| Zone5 | 11BB     | 1/05/2021 | 1348.57 | 710.573  | 26.9501 | -0.1088 |                |
|-------|----------|-----------|---------|----------|---------|---------|----------------|
| Zone5 | AP22A    | 1/05/2021 | 1868.44 | 188.565  | 12.4305 | -0.1085 |                |
| Zone5 | 20F      | 1/05/2021 | 2605.79 | 1575.98  | 37.5932 | -0.1084 |                |
| Zone5 | 12BC     | 1/05/2021 | 1405.27 | 368.295  | 14.9408 | -0.1069 |                |
| Zone5 | BM13     | 1/05/2021 | 1426.61 | 269.34   | 13.5984 | -0.1067 |                |
| Zone5 | 1.10A    | 1/05/2021 | 1599.70 | 278.94   | 16.6579 | -0.1056 |                |
| Zone5 | BM21     | 1/05/2021 | 2654.80 | 1515.397 | 39.4484 | -0.1050 |                |
| Zone5 | 4B       | 1/05/2021 | 1021.54 | 1448.63  | 31.2703 | -0.1041 |                |
| Zone5 | 21BC     | 1/05/2021 | 2719.27 | 1477.799 | 41.2914 | -0.1035 |                |
| Zone5 | 2BC      | 1/05/2021 | 970.20  | 1241.898 | 30.4035 | -0.1025 |                |
| Zone5 | 21K      | 1/05/2021 | 2681.11 | 1572.207 | 40.0239 | -0.1014 |                |
| Zone5 | 2.17A    | 1/05/2021 | 3085.76 | 555.866  | 36.9315 | -0.098  |                |
| Zone5 | 30C      | 1/05/2021 | 2573.54 | 1675.395 | 38.4651 | -0.0888 |                |
| Zone5 | вм9в     | 1/05/2021 | 1220.25 | 1523.285 | 34.7696 | -0.0878 |                |
| Zone5 | 7CB      | 1/05/2021 | 1161.74 | 1597.63  | 30.63   | -0.0858 |                |
| Zone5 | AP3      | 1/05/2021 | 918.94  | 1140.585 | 26.0845 | -0.0858 |                |
| Zone5 | 26EE     | 1/05/2021 | 1343.86 | 1621.819 | 44.3113 | -0.0706 |                |
| Zone5 | 26F      | 1/05/2021 | 1392.77 | 1680.261 | 43.8783 | -0.0616 |                |
| Zone5 | 26R      | 1/05/2021 | 1905.59 | 1927.165 | 71.3759 | -0.0593 |                |
| Zone5 | 26PB     | 1/05/2021 | 1834.84 | 1893.106 | 67.9633 | -0.0593 |                |
| Zone5 | 26Q      | 1/05/2021 | 1963.00 | 1982.711 | 73.6923 | -0.0588 |                |
| Zone4 | 23C      | 1/05/2021 | 2856.14 | 1068.014 | 37.5669 | -0.1992 | Nr watercourse |
| Zone4 | 23AB     | 1/05/2021 | 3145.42 | 1078.73  | 37.2149 | -0.1569 |                |
| Zone4 | 2.28     | 1/05/2021 | 3076.72 | 1555.994 | 42.9228 | -0.1477 | dist'd         |
| Zone4 | 2.24     | 1/05/2021 | 2885.91 | 1215.469 | 41.3012 | -0.1458 |                |
| Zone4 | BANK1    | 1/05/2021 | 2866.21 | 1023.248 | 37.8097 | -0.1446 |                |
| Zone4 | 23D      | 1/05/2021 | 2861.42 | 1154.885 | 38.8732 | -0.1437 |                |
| Zone4 | 22C      | 1/05/2021 | 2846.39 | 1352.544 | 40.336  | -0.1433 |                |
| Zone4 | 23E      | 1/05/2021 | 2774.82 | 972.514  | 37.7225 | -0.139  |                |
| Zone4 | 23F      | 1/05/2021 | 2700.77 | 968.793  | 36.6593 | -0.1383 |                |
| Zone4 | 2.25     | 1/05/2021 | 2874.51 | 1097.261 | 37.9979 | -0.1373 |                |
| Zone4 | 23B      | 1/05/2021 | 2856.49 | 949.794  | 38.7645 | -0.1356 |                |
| Zone4 | MATAURA1 | 1/05/2021 | 2831.84 | 1250.806 | 41.0891 | -0.1307 |                |

| Zone4 | 2.13    | 1/05/2021 | 2725.42 | 874.95   | 47.2269 | -0.1290 |
|-------|---------|-----------|---------|----------|---------|---------|
| Zone4 | BARRY1  | 1/05/2021 | 3047.74 | 926.576  | 38.1369 | -0.1279 |
| Zone4 | 2.14A   | 1/05/2021 | 2853.28 | 838.669  | 41.3398 | -0.1278 |
| Zone4 | 22GB    | 1/05/2021 | 2862.88 | 1387.968 | 40.8671 | -0.1271 |
| Zone4 | 2.19B   | 1/05/2021 | 3270.21 | 916.063  | 38.5819 | -0.127  |
| Zone4 | BARRY3  | 1/05/2021 | 3176.85 | 895.991  | 37.707  | -0.1236 |
| Zone4 | MORTON  | 1/05/2021 | 2975.42 | 1231.913 | 40.7371 | -0.1226 |
| Zone4 | STAFORD | 1/05/2021 | 3139.86 | 998.179  | 37.3358 | -0.1184 |
| Zone4 | BARRY4B | 1/05/2021 | 3320.16 | 912.693  | 38.9126 | -0.118  |
| Zone4 | 2.18    | 1/05/2021 | 3218.04 | 712.756  | 44.5687 | -0.118  |
| Zone4 | BARRY2  | 1/05/2021 | 2936.96 | 944.224  | 38.3783 | -0.1173 |
| Zone4 | 21P     | 1/05/2021 | 2849.17 | 1456.9   | 41.8668 | -0.1165 |
| Zone4 | 2HB     | 1/05/2021 | 1078.24 | 886.849  | 24.4093 | -0.116  |
| Zone4 | BM23    | 1/05/2021 | 3107.42 | 921.049  | 38.1115 | -0.1156 |
| Zone4 | BARRY5  | 1/05/2021 | 3397.59 | 904.647  | 41.0174 | -0.115  |
| Zone4 | 22E     | 1/05/2021 | 3055.20 | 1231.504 | 40.8089 | -0.1146 |
| Zone4 | 1.11B   | 1/05/2021 | 1675.83 | 133.62   | 9.0488  | -0.1142 |
| Zone4 | BARRY6  | 1/05/2021 | 3432.52 | 904.356  | 42.5034 | -0.1139 |
| Zone4 | 2.23    | 1/05/2021 | 3560.02 | 1212.795 | 36.6594 | -0.1131 |
| Zone4 | 22BC    | 1/05/2021 | 2916.75 | 1435.773 | 42.13   | -0.1118 |
| Zone4 | 221     | 1/05/2021 | 2918.98 | 1461.367 | 41.9381 | -0.1111 |
| Zone4 | 2.16    | 1/05/2021 | 3007.62 | 739.64   | 33.6173 | -0.1105 |
| Zone4 | 2.20    | 1/05/2021 | 3467.69 | 904.56   | 43.8114 | -0.1097 |
| Zone4 | 22H     | 1/05/2021 | 2869.25 | 1441.796 | 41.6483 | -0.1085 |
| Zone4 | 22M     | 1/05/2021 | 2973.44 | 1434.656 | 41.6991 | -0.1069 |
| Zone4 | 2.15    | 1/05/2021 | 2918.94 | 723.52   | 38.3911 | -0.1058 |
| Zone4 | BARRY8  | 1/05/2021 | 3592.28 | 871.451  | 37.9571 | -0.1046 |
| Zone4 | 2.21    | 1/05/2021 | 3563.09 | 1045.181 | 34.0559 | -0.1037 |
| Zone4 | 22L     | 1/05/2021 | 3047.70 | 1499.876 | 41.0181 | -0.1036 |
| Zone4 | BARRY7  | 1/05/2021 | 3518.87 | 901.897  | 43.6377 | -0.1036 |
| Zone4 | GW      | 1/05/2021 | 3128.83 | 1140.936 | 38.5661 | -0.1033 |
| Zone4 | BM2     | 1/05/2021 | 915.74  | 1091.799 | 24.8472 | -0.1033 |
| Zone4 | AP100   | 1/05/2021 | 1893.80 | 81.27    | 11.8051 | -0.1027 |

| Zone4 | 2.22  | 1/05/2021 | 3339.13 | 1206.603 | 40.3757 | -0.1021 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone4 | CUBA  | 1/05/2021 | 3224.32 | 1079.177 | 35.8517 | -0.1015 |
| Zone4 | 22D   | 1/05/2021 | 3100.02 | 1335.441 | 41.476  | -0.1001 |
| Zone4 | 1.05  | 1/05/2021 | 1176.96 | 473.454  | 21.8411 | -0.0983 |
| Zone4 | 22A   | 1/05/2021 | 3003.28 | 1429.771 | 41.6749 | -0.0978 |
| Zone4 | 22J   | 1/05/2021 | 2944.47 | 1489.763 | 42.4525 | -0.0972 |
| Zone4 | 21FB  | 1/05/2021 | 2861.65 | 1512.211 | 42.6743 | -0.096  |
| Zone4 | 26BE  | 1/05/2021 | 1408.78 | 1800.553 | 38.8326 | -0.0935 |
| Zone4 | 21AC  | 1/05/2021 | 2716.64 | 1617.767 | 39.7165 | -0.0925 |
| Zone4 | 21L   | 1/05/2021 | 2806.79 | 1575.074 | 43.1115 | -0.0923 |
| Zone4 | 2.29B | 1/05/2021 | 2953.39 | 1548.172 | 42.6159 | -0.0909 |
| Zone4 | 1.26  | 1/05/2021 | 1926.81 | 30.05    | 15.1161 | -0.0907 |
| Zone4 | 2GB   | 1/05/2021 | 922.38  | 967.66   | 22.6949 | -0.0906 |
| Zone4 | 15C   | 1/05/2021 | 1156.82 | 571.077  | 24.2319 | -0.0897 |
| Zone4 | BM22  | 1/05/2021 | 3115.79 | 1442.952 | 40.6449 | -0.0893 |
| Zone4 | 2.26  | 1/05/2021 | 3241.22 | 1380.889 | 39.2439 | -0.0893 |
| Zone4 | 27KB  | 1/05/2021 | 2320.23 | 2120.21  | 63.357  | -0.0886 |
| Zone4 | 2.27  | 1/05/2021 | 3379.40 | 1371.48  | 37.7827 | -0.0879 |
| Zone4 | 26CE  | 1/05/2021 | 1377.77 | 1711.89  | 40.6175 | -0.0861 |
| Zone4 | 1.06  | 1/05/2021 | 1159.34 | 302.26   | 17.2458 | -0.0853 |
| Zone4 | 21Q   | 1/05/2021 | 2899.60 | 1571.317 | 43.1529 | -0.0843 |
| Zone4 | 30BB  | 1/05/2021 | 2604.86 | 1726.496 | 41.5726 | -0.0823 |
| Zone4 | 22KB  | 1/05/2021 | 2981.80 | 1603.49  | 42.8761 | -0.0806 |
| Zone4 | 211   | 1/05/2021 | 2854.70 | 1668.793 | 41.6697 | -0.0801 |
| Zone4 | 21J   | 1/05/2021 | 2773.44 | 1688.923 | 39.9876 | -0.0791 |
| Zone4 | BM15  | 1/05/2021 | 976.94  | 783.004  | 20.5377 | -0.0788 |
| Zone4 | SM822 | 1/05/2021 | 2512.91 | 1841.132 | 41.4803 | -0.0778 |
| Zone4 | 21GC  | 1/05/2021 | 2901.12 | 1614.054 | 43.4697 | -0.0771 |
| Zone4 | 27N   | 1/05/2021 | 2179.57 | 2075.985 | 71.9339 | -0.0767 |
| Zone4 | 1.09B | 1/05/2021 | 1344.14 | 117.48   | 9.9497  | -0.0754 |
| Zone4 | 4.08  | 1/05/2021 | 2350.64 | 2022.32  | 73.2334 | -0.0737 |
| Zone4 | 2.31B | 1/05/2021 | 3201.23 | 1637.289 | 42.1201 | -0.0732 |
| Zone4 | 27E   | 1/05/2021 | 2494.09 | 2171.62  | 50.367  | -0.0712 |
| Zone4 | 7BB   | 1/05/2021 | 1105.69 | 1689.902 | 35.9574 | -0.0699 |

| Zone3 | 2CE   | 1/05/2021 | 774.75  | 1313.19  | 34.6275 | -0.0984 | Near Zon |
|-------|-------|-----------|---------|----------|---------|---------|----------|
| Zone4 | 3.6A  | 1/05/2021 | 1526.28 | 2015.739 | 38.94   | -0.0256 |          |
| Zone4 | 26OB  | 1/05/2021 | 1706.93 | 1812.27  | 67.1993 | -0.0355 |          |
| Zone4 | 3.13  | 1/05/2021 | 1744.89 | 2097.492 | 53.7804 | -0.0442 |          |
| Zone4 | BM26  | 1/05/2021 | 1542.45 | 1837.805 | 45.4419 | -0.0442 |          |
| Zone4 | 27DC  | 1/05/2021 | 2541.24 | 2190.709 | 48.2132 | -0.0463 |          |
| Zone4 | 270   | 1/05/2021 | 2101.57 | 2042.82  | 75.044  | -0.0465 |          |
| Zone4 | 27L   | 1/05/2021 | 2280.24 | 2115.41  | 65.8605 | -0.0474 |          |
| Zone4 | 3.10A | 1/05/2021 | 1689.03 | 1978.29  | 53.4564 | -0.0480 |          |
| Zone4 | 30AB  | 1/05/2021 | 2685.64 | 1898.443 | 46.2599 | -0.0487 |          |
| Zone4 | 27AB  | 1/05/2021 | 2009.08 | 2064.33  | 73.5019 | -0.0487 |          |
| Zone4 | 27M   | 1/05/2021 | 2224.38 | 2095.26  | 69.1771 | -0.0500 |          |
| Zone4 | 27F   | 1/05/2021 | 2466.48 | 2164.026 | 52.3439 | -0.051  |          |
| Zone4 | BM30  | 1/05/2021 | 2715.36 | 1996.207 | 44.1111 | -0.0525 |          |
| Zone4 | 3.11A | 1/05/2021 | 1786.17 | 1929.216 | 62.1682 | -0.0539 |          |
| Zone4 | 3.09  | 1/05/2021 | 1618.51 | 1870.174 | 51.9377 | -0.0543 |          |
| Zone4 | 271   | 1/05/2021 | 2385.10 | 2141.94  | 59.5529 | -0.0545 |          |
| Zone4 | 3.02  | 1/05/2021 | 1344.87 | 1837.735 | 34.9623 | -0.0549 |          |
| Zone4 | 26MB  | 1/05/2021 | 1593.46 | 1750.663 | 58.9871 | -0.056  |          |
| Zone4 | 26G   | 1/05/2021 | 1425.06 | 1706.748 | 47.0187 | -0.0561 |          |
| Zone4 | 261   | 1/05/2021 | 1481.67 | 1750.49  | 52.744  | -0.0567 |          |
| Zone4 | 4.05  | 1/05/2021 | 2809.68 | 1897.68  | 40.6437 | -0.0577 |          |
| Zone4 | 26JB  | 1/05/2021 | 1495.71 | 1756.55  | 53.7437 | -0.0587 |          |
| Zone4 |       | 1/05/2021 | 1452.90 | 1729.593 | 49.9797 | -0.0591 |          |
| Zone4 | 27J   | 1/05/2021 | 2344.14 | 2136.138 | 62.1567 | -0.0592 |          |
| Zone4 | 4.07  | 1/05/2021 | 2554.47 | 2079.24  | 45.0733 | -0.0598 |          |
| Zone4 | 27G   | 1/05/2021 | 2440.97 | 2157.30  | 54.5851 | -0.0600 |          |
| Zone4 | 27H   | 1/05/2021 | 2413.27 | 2149.76  | 57.0497 | -0.0608 |          |
| Zone4 | 26NC  | 1/05/2021 | 1641.16 | 1772.4   | 60.409  | -0.0609 |          |
| Zone4 | 3.04B | 1/05/2021 | 1123.76 | 1821.50  | 39.3024 | -0.0625 |          |
| Zone4 | 26AE  | 1/05/2021 | 1432.47 | 1883.479 | 37.57   | -0.0628 |          |
| Zone4 | 3.01  | 1/05/2021 | 1291.95 | 1690.33  | 37.3158 | -0.0637 |          |
| Zone4 | 21HC  | 1/05/2021 | 2916.84 | 1728.842 | 42.9086 | -0.0674 |          |
| Zone4 | 4.09  | 1/05/2021 | 2249.27 | 2029.944 | 78.9399 | -0.0688 |          |
| Zone4 | 2.30B | 1/05/2021 | 3000.35 | 1672.941 | 43.1984 | -0.0692 |          |

| Zone3 | 14DB  | 1/05/2021 | 876.99  | 411.215  | 15.1689 | -0.0849 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone3 | 2.34  | 1/05/2021 | 3452.45 | 1683.502 | 37.7344 | -0.0789 |
| Zone3 | A33C  | 1/05/2021 | 456.03  | 1219.23  | 35.8654 | -0.0745 |
| Zone3 | 2DA   | 1/05/2021 | 682.15  | 1189.58  | 35.8196 | -0.0690 |
| Zone3 | 2.36  | 1/05/2021 | 3433.14 | 1534.88  | 35.9468 | -0.0684 |
| Zone3 | 1.25  | 1/05/2021 | 2175.94 | -129.11  | 20.0776 | -0.0684 |
| Zone3 | 1.07  | 1/05/2021 | 924.43  | 267.487  | 12.5158 | -0.0678 |
| Zone3 | 4EC   | 1/05/2021 | 782.01  | 1687.78  | 41.1431 | -0.0666 |
| Zone3 | 2.40B | 1/05/2021 | 3572.85 | 1526.452 | 33.1742 | -0.0659 |
| Zone3 | 2FC   | 1/05/2021 | 720.33  | 843.06   | 23.9406 | -0.0659 |
| Zone3 | 4.02  | 1/05/2021 | 2797.90 | 2143.571 | 45.7833 | -0.0658 |
| Zone3 | 2.33  | 1/05/2021 | 3294.51 | 1691.95  | 40.3272 | -0.0657 |
| Zone3 | 4A    | 1/05/2021 | 815.01  | 1494.15  | 40.7072 | -0.0652 |
| Zone3 | 15DB  | 1/05/2021 | 917.56  | 466.148  | 15.6165 | -0.0635 |
| Zone3 | 14CB  | 1/05/2021 | 759.10  | 389.766  | 18.8327 | -0.0631 |
| Zone3 | 14BC  | 1/05/2021 | 535.45  | 340.67   | 20.9231 | -0.0624 |
| Zone3 | 14EA  | 1/05/2021 | 808.56  | 504.72   | 17.1078 | -0.0610 |
| Zone3 | 4.03B | 1/05/2021 | 2794.90 | 2044.78  | 43.8203 | -0.0606 |
| Zone3 | 31BC  | 1/05/2021 | 3159.33 | 1954.857 | 45.5222 | -0.0603 |
| Zone3 | BM31  | 1/05/2021 | 2967.04 | 1873.48  | 43.306  | -0.0595 |
| Zone3 | 2EB   | 1/05/2021 | 689.02  | 1054.62  | 29.2745 | -0.0575 |
| Zone3 | 1.08  | 1/05/2021 | 1052.91 | 107.17   | 16.5423 | -0.0565 |
| Zone3 | 4.01C | 1/05/2021 | 2891.78 | 2113.146 | 47.323  | -0.0551 |
| Zone3 | 4.04  | 1/05/2021 | 2662.60 | 2131.765 | 45.9403 | -0.0549 |
| Zone3 | 31AC  | 1/05/2021 | 3059.04 | 1910.629 | 44.09   | -0.0525 |
| Zone3 | 1.21A | 1/05/2021 | 1939.94 | -325.504 | 19.6778 | -0.0519 |
| Zone3 | 29DB  | 1/05/2021 | 2996.63 | 2106.66  | 47.8276 | -0.0513 |
| Zone3 | 14FB  | 1/05/2021 | 705.60  | 649.144  | 20.1686 | -0.0508 |
| Zone3 | 1.22  | 1/05/2021 | 1510.00 | -249.925 | 15.8855 | -0.0473 |
| Zone3 | 3.25  | 1/05/2021 | 3116.90 | 2107.056 | 49.8325 | -0.0446 |
| Zone3 | 31CC  | 1/05/2021 | 3248.97 | 1989.89  | 47.0557 | -0.0442 |
| Zone3 | 29AC  | 1/05/2021 | 2641.62 | 2218.071 | 48.5388 | -0.0371 |
| Zone3 | 29CE  | 1/05/2021 | 2891.84 | 2285.59  | 51.5932 | -0.0364 |
| Zone3 | 3.24  | 1/05/2021 | 3017.29 | 2258.71  | 51.9543 | -0.0319 |
| Zone3 | 29B   | 1/05/2021 | 2772.84 | 2242.217 | 50.024  | -0.0227 |
|       |       |           |         |          |         |         |

| Zone2 | 1K   | 1/05/2021 | 511.74  | 957.174  | 29.6109 | -0.0581 |
|-------|------|-----------|---------|----------|---------|---------|
| Zone2 | 7AC  | 1/05/2021 | 994.54  | 1781.82  | 43.5375 | -0.0544 |
| Zone2 | 3.14 | 1/05/2021 | 1752.75 | 2214.323 | 48.7723 | -0.0543 |
| Zone2 | 3.03 | 1/05/2021 | 1134.46 | 1917.24  | 39.3623 | -0.0526 |
| Zone2 | 33F  | 1/05/2021 | 347.95  | 1511.678 | 42.0581 | -0.0504 |
| Zone2 | BM4  | 1/05/2021 | 689.21  | 1555.547 | 42.2918 | -0.0489 |
| Zone2 | 3.12 | 1/05/2021 | 1599.68 | 2152.41  | 40.2803 | -0.0475 |
| Zone2 | BM7  | 1/05/2021 | 1057.32 | 1843.069 | 44.1289 | -0.0475 |
| Zone2 | 1JB  | 1/05/2021 | 604.79  | 822.761  | 26.423  | -0.0472 |
| Zone2 | 1C   | 1/05/2021 | 421.48  | 1098.886 | 34.8018 | -0.0468 |
| Zone2 | 4FB  | 1/05/2021 | 562.51  | 1370.97  | 39.3864 | -0.0467 |
| Zone2 | 33A  | 1/05/2021 | 338.15  | 1303.89  | 36.7328 | -0.0458 |
| Zone2 | 1B   | 1/05/2021 | 337.50  | 1062.94  | 34.0119 | -0.0453 |
| Zone2 | 6A   | 1/05/2021 | 946.43  | 1928.115 | 47.5245 | -0.0435 |
| Zone2 | 33E  | 1/05/2021 | 437.71  | 1437.524 | 41.0037 | -0.0426 |
| Zone2 | 33DB | 1/05/2021 | 265.40  | 1714.72  | 46.3765 | -0.0419 |
| Zone2 | 11   | 1/05/2021 | 468.34  | 761.228  | 27.2879 | -0.0411 |
| Zone2 | 1.12 | 1/05/2021 | 800.71  | -50.228  | 10.8057 | -0.041  |
| Zone2 | 1.04 | 1/05/2021 | 795.98  | 129.36   | 12.8182 | -0.0407 |
| Zone2 | 3.07 | 1/05/2021 | 1362.08 | 2096.818 | 48.0586 | -0.0406 |
| Zone2 | BM6  | 1/05/2021 | 881.86  | 1837.08  | 46.2465 | -0.0371 |
| Zone2 | 1NB  | 1/05/2021 | -206.98 | 842.119  | 24.8164 | -0.0369 |
| Zone2 | 1SC  | 1/05/2021 | -674.31 | 739.267  | 14.4561 | -0.0367 |
| Zone2 | BM14 | 1/05/2021 | 718.16  | 485.96   | 19.8509 | -0.0367 |
| Zone2 | 1FB  | 1/05/2021 | 210.46  | 850.779  | 29.8435 | -0.034  |
| Zone2 | 10   | 1/05/2021 | -271.35 | 814.183  | 22.7238 | -0.0339 |
| Zone2 | 5C   | 1/05/2021 | 705.43  | 1754.71  | 45.1832 | -0.0338 |
| Zone2 | 33GA | 1/05/2021 | 415.95  | 1621.64  | 45.3667 | -0.0338 |
| Zone2 | 1HC  | 1/05/2021 | 299.70  | 702.8    | 27.0572 | -0.0337 |
| Zone2 | 1EB  | 1/05/2021 | 388.60  | 912.09   | 30.4457 | -0.0332 |
| Zone2 | 14AC | 1/05/2021 | 515.17  | 457.622  | 24.0402 | -0.0329 |
| Zone2 | 1LD  | 1/05/2021 | -102.13 | 906.045  | 28.3679 | -0.0321 |
| Zone2 | 1A   | 1/05/2021 | 249.92  | 1026.38  | 33.3443 | -0.0314 |
| Zone2 | 1GB  | 1/05/2021 | -2.87   | 769.742  | 29.3043 | -0.0304 |
| Zone2 | BM5  | 1/05/2021 | 325.93  | 1806.47  | 47.8159 | -0.0295 |

| - 3 -  |       |           |          |          |         |          |                 |
|--------|-------|-----------|----------|----------|---------|----------|-----------------|
| Zone2  | 1ME   | 1/05/2021 | -155.40  | 879.887  | 26.1137 | -0.0295  |                 |
| Zone2  | 3.15  | 1/05/2021 | 1696.24  | 2315.821 | 39.1191 | -0.0289  |                 |
| Zone2  | 1.14  | 1/05/2021 | 496.74   | -535.095 | 8.4409  | -0.0287  |                 |
| Zone2  | BM1   | 1/05/2021 | 152.75   | 994.869  | 32.7869 | -0.0277  |                 |
| Zone2  | 5BC   | 1/05/2021 | 547.16   | 1824.599 | 49.1514 | -0.0274  |                 |
| Zone2  | 33B   | 1/05/2021 | 156.88   | 1430.80  | 34.427  | -0.0260  |                 |
| Zone2  | 5AC   | 1/05/2021 | 470.30   | 1688.45  | 47.0519 | -0.0259  |                 |
| Zone2  | 1.03B | 1/05/2021 | 365.55   | 323.37   | 19.3997 | -0.0255  |                 |
| Zone2  | 3.22A | 1/05/2021 | 2891.15  | 2398.649 | 56.6793 | -0.0254  |                 |
| Zone2  | 1.01  | 1/05/2021 | 56.47    | 604.08   | 25.4617 | -0.0252  |                 |
| Zone2  | 3.05  | 1/05/2021 | 966.29   | 1990.771 | 47.2077 | -0.0247  |                 |
| Zone2  | 33C   | 1/05/2021 | 222.53   | 1621.24  | 44.4236 | -0.0245  |                 |
| Zone2  | BM29  | 1/05/2021 | 2608.80  | 2400.756 | 55.9841 | -0.0243  |                 |
| Zone2  | 1PA   | 1/05/2021 | -351.51  | 787.24   | 20.0759 | -0.0239  |                 |
| Zone2  | 1RA   | 1/05/2021 | -579.06  | 750.356  | 16.747  | -0.0208  |                 |
| Zone2  | AP2   | 1/05/2021 | -1276.40 | 954.13   | 5.7787  | -0.0173  |                 |
| Zone2  | 1D    | 1/05/2021 | -32.05   | 911.592  | 30.0556 | -0.0172  |                 |
| Zone2  | 1.16  | 1/05/2021 | 1552.97  | -1086.27 | 18.3813 | 0.0033   |                 |
| Zone2  | 1.02D | 1/05/2021 | 85.42    | 283.30   | 18.6724 | new mark | new mark        |
| Zone2  | 1QC   | 1/05/2021 | -466.05  | 769.147  | MISSED  | missed   | Gravel heap     |
| Zone1  | 2.44  | 1/05/2021 | 2734.64  | 421.025  | 27.2493 | -0.5794  | dist'd          |
| Zone1  | 2.05  | 1/05/2021 | 2535.68  | 272.68   | 20.7811 | -0.0990  | Near Zone 5     |
| Zone1  | 31MD  | 1/05/2021 | 4275.09  | 1884.55  | 30.7355 | -0.0745  | Nr river bridge |
| Zone1  | 31NE  | 1/05/2021 | 4349.43  | 1927.42  | 33.3594 | -0.0692  | Nr river bridge |
| Zone1  | 2.35  | 1/05/2021 | 3609.80  | 1652.681 | 34.1168 | -0.0689  | Near Zone 3     |
| Zone1  | 31FC  | 1/05/2021 | 3614.22  | 1954.151 | 43.4352 | -0.0669  | Near Zone 3     |
| Zone1  | 31LC  | 1/05/2021 | 4168.53  | 1862.106 | 32.1036 | -0.064   | Nr river bridge |
| Zone1  | 31KC  | 1/05/2021 | 4076.39  | 1883.199 | 34.4952 | -0.0591  | Nr river bridge |
| Zone1  | 31DD  | 1/05/2021 | 3400.43  | 1989.833 | 46.7025 | -0.0574  | Near Zone 3     |
| Zone1  | 31HC  | 1/05/2021 | 3810.83  | 1924.65  | 40.34   | -0.0555  | Near 31KC       |
| Zone1  | 31GC  | 1/05/2021 | 3711.83  | 1939.28  | 42.1881 | -0.0552  | Near 31DD       |
| Zone1  | 31IC  | 1/05/2021 | 3909.03  | 1909.895 | 37.857  | -0.0534  |                 |
| Zone1  | 31JD  | 1/05/2021 | 4005.65  | 1911.42  | 35.5676 | -0.0529  |                 |
| Zone1  | 28AE  | 1/05/2021 | 2128.26  | 2448.76  | 85.9251 | -0.0512  |                 |
| Zone1  |       | 4/05/0004 | 2406.24  | 1075 774 | 45.0004 | 0.0404   |                 |
| 201161 | 31ED  | 1/05/2021 | 3496.21  | 1975.774 | 45.9301 | -0.0481  |                 |

| Zone1  | 27CD    | 1/05/2021 | 2122.89  | 2374.362 | 85.0616 | -0.0442 |         |  |
|--------|---------|-----------|----------|----------|---------|---------|---------|--|
| Zone1  | 31PC    | 1/05/2021 | 4393.52  | 1991.662 | 37.7402 | -0.0425 |         |  |
| Zone1  | 31QC    | 1/05/2021 | 4417.71  | 2035.37  | 39.6359 | -0.0398 |         |  |
| Zone1  | 3.21    | 1/05/2021 | 2585.77  | 2493.38  | 64.9422 | -0.0340 |         |  |
| Zone1  | 1VA     | 1/05/2021 | -994.62  | 800.62   | 6.4358  | -0.0312 |         |  |
| Zone1  | 3.30    | 1/05/2021 | 3296.29  | 2235.94  | 50.3925 | -0.0302 |         |  |
| Zone1  | 3.16    | 1/05/2021 | 2195.60  | 2563.077 | 95.6192 | -0.0273 |         |  |
| Zone1  | AP2A    | 1/05/2021 | -766.18  | 738.506  | 12.3252 | -0.0245 |         |  |
| Zone1  | 3.26B   | 1/05/2021 | 3200.09  | 2347.92  | 55.4301 | -0.0244 |         |  |
| Zone1  | 310D    | 1/05/2021 | 4374.76  | 1958.375 | 36.075  | -0.0237 |         |  |
| Zone1  | 1.20B   | 1/05/2021 | 1995.49  | -664.093 | 22.0512 | -0.0213 |         |  |
| Zone1  | 3.28A   | 1/05/2021 | 3212.99  | 2635.997 | 53.849  | -0.0207 |         |  |
| Zone1  | 3.23    | 1/05/2021 | 3035.80  | 2453.65  | 59.6373 | -0.0203 |         |  |
| Zone1  | 1.24    | 1/05/2021 | 2225.16  | -613.228 | 16.7136 | -0.02   |         |  |
| Zone1  | 1.23    | 1/05/2021 | 1013.01  | -440.769 | 13.2893 | -0.0193 |         |  |
| Zone1  | 3.29    | 1/05/2021 | 3662.64  | 2323.53  | 44.9323 | -0.0182 |         |  |
| Zone1  | 1.13    | 1/05/2021 | 591.36   | -310.80  | 7.0744  | -0.0181 |         |  |
| Zone1  | 3.27B   | 1/05/2021 | 3148.37  | 2510.53  | 60.2937 | -0.0179 |         |  |
| Zone1  | 1UA     | 1/05/2021 | -914.75  | 759.05   | 8.7386  | -0.0160 |         |  |
| Zone1  | AP20No2 | 1/05/2021 | -2303.63 | 731.69   | 20.1894 | -0.0158 |         |  |
| Zone1  | 1TB     | 1/05/2021 | -832.77  | 738.92   | 11.2432 | -0.0113 |         |  |
| Zone1  | AP1A    | 1/05/2021 | 4557.10  | 2288.33  | 42.4904 | -0.0096 |         |  |
| Zone1  | AP1     | 1/05/2021 | 4486.29  | 2137.01  | 41.384  | -0.0085 |         |  |
| Zone1  | 1.27B   | 1/05/2021 | 1401.56  | -701.57  | 15.3553 | -0.0058 |         |  |
| Zone1  | 1.15    | 1/05/2021 | 923.35   | -995.413 | 14.3705 | -0.0015 |         |  |
| Zone1  | 1.17B   | 1/05/2021 | 2082.20  | -1093.92 | 25.603  | -0.0006 |         |  |
| Zone1  | AP19    | 1/05/2021 | -3242.58 | 480.68   | -6.5213 | 0.0000  | control |  |
| Zone1  | BUH5    | 1/05/2021 | 5480.15  | 2780.65  | 52.7423 | 0.0000  | control |  |
| Zone1  | C1      | 1/05/2021 | 2183.23  | -1759.33 | 32.8425 | 0.0000  | control |  |
| Zone1  | BM28/2  | 1/05/2021 | 2282.46  | 2770.68  | 101.897 | 0.0113  |         |  |
| Zone 1 | AP24A   | 1/05/2021 | 2114.57  | -1292.93 | 28.076  | 0.0008  |         |  |
| Favona | F18     | 1/05/2021 | 3423.83  | 648.30   | 39.9981 | -0.3333 | Dist'd? |  |
| Favona | F20     | 1/05/2021 | 3411.70  | 665.722  | 40.9183 | -0.2858 | Dist'd? |  |
| Favona | F23     | 1/05/2021 | 3393.93  | 684.822  | 40.6171 | -0.2835 | Dist'd? |  |
| Favona | F21     | 1/05/2021 | 3405.99  | 671.998  | 40.7569 | -0.2564 |         |  |

| Favona | F24     | 1/05/2021 | 3388.13 | 690.85   | 40.6332 | -0.2547 | Dist'd? |
|--------|---------|-----------|---------|----------|---------|---------|---------|
| Favona | F17B    | 1/05/2021 | 3405.48 | 613.91   | 43.9903 | -0.2492 |         |
| Favona | F22     | 1/05/2021 | 3399.79 | 678.393  | 40.6987 | -0.2377 |         |
| Favona | F25     | 1/05/2021 | 3381.55 | 697.882  | 40.6062 | -0.2153 | Dist'd? |
| Favona | F15C    | 1/05/2021 | 3297.17 | 585.319  | 57.34   | -0.1765 |         |
| Favona | BLOCK-S | 1/05/2021 | 3295.82 | 124.324  | 24.8389 | -0.1731 |         |
| Favona | F26     | 1/05/2021 | 3374.47 | 705.54   | 40.593  | -0.1729 |         |
| Favona | F16B    | 1/05/2021 | 3367.38 | 578.70   | 46.3938 | -0.1722 |         |
| Favona | F11C    | 1/05/2021 | 3192.52 | 479.444  | 51.4416 | -0.1687 |         |
| Favona | F27B    | 1/05/2021 | 3372.41 | 717.52   | 40.5064 | -0.1668 |         |
| Favona | BLOCK-N | 1/05/2021 | 3336.45 | 215.69   | 24.3093 | -0.1537 |         |
| Favona | F34C    | 1/05/2021 | 3339.49 | 849.569  | 40.1871 | -0.1534 |         |
| Favona | F10B    | 1/05/2021 | 3176.88 | 446.75   | 49.275  | -0.1531 |         |
| Favona | F12C    | 1/05/2021 | 3207.32 | 503.824  | 53.5003 | -0.1525 |         |
| Favona | F28B    | 1/05/2021 | 3365.21 | 727.17   | 40.5103 | -0.1494 |         |
| Favona | F09A    | 1/05/2021 | 3157.20 | 388.283  | 45.1623 | -0.1427 |         |
| Favona | F14C    | 1/05/2021 | 3275.29 | 551.31   | 60.6656 | -0.1422 |         |
| Favona | F13C    | 1/05/2021 | 3236.43 | 533.631  | 57.914  | -0.1415 |         |
| Favona | F30B    | 1/05/2021 | 3359.36 | 748.26   | 40.6995 | -0.1380 |         |
| Favona | F31B    | 1/05/2021 | 3354.47 | 756.84   | 41.2443 | -0.1361 |         |
| Favona | F29B    | 1/05/2021 | 3363.20 | 738.71   | 40.4961 | -0.1359 |         |
| Favona | F33     | 1/05/2021 | 3348.56 | 812.51   | 40.6357 | -0.128  |         |
| Favona | F08A    | 1/05/2021 | 3126.97 | 430.49   | 42.7504 | -0.1271 |         |
| Favona | F32B    | 1/05/2021 | 3348.78 | 769.103  | 40.8662 | -0.1258 |         |
| Favona | F35B    | 1/05/2021 | 3336.68 | 896.063  | 39.7775 | -0.1197 |         |
| Favona | F07A    | 1/05/2021 | 3110.57 | 437.24   | 41.3654 | -0.1171 |         |
| Favona | ITXCIVB | 1/05/2021 | 2943.85 | 542.17   | 32.6113 | -0.1114 |         |
| Favona | F06     | 1/05/2021 | 3107.08 | 445.21   | 40.5065 | -0.1113 |         |
| Favona | F04     | 1/05/2021 | 3100.96 | 470.88   | 38.7269 | -0.108  |         |
| Favona | F03     | 1/05/2021 | 3099.03 | 480.33   | 38.402  | -0.1057 |         |
| Favona | F02     | 1/05/2021 | 3097.60 | 490.00   | 38.2054 | -0.1053 |         |
| Favona | F05     | 1/05/2021 | 3104.66 | 455.54   | 39.4645 | -0.1046 |         |
| Favona | FP1     | 1/05/2021 | 3004.15 | 131.25   | 45.4194 | -0.0896 |         |
| Favona | TRIG 24 | 1/05/2021 | 3260.76 | -615.678 | 25.6939 | -0.0361 |         |
| Favona | TRIG 22 | 1/05/2021 | 3681.97 | 89.358   | 26.1576 | -0.0324 |         |
|        |         |           |         |          |         |         |         |

Page 125 of 161 125

#### **MEMORANDUM**

TO: MARK BURROUGHS

FROM: BRUCE MORRISON

DATE: 23RD JANUARY 2022

SUBJECT: GROUND SETTLEMENT MONITORING –NOVEMBER 2021

## Introduction

This report outlines the results from the November 2021 Ground Settlement Monitoring Survey.

#### Field Method

The settlement monitoring marks were levelled during November and December 2021 for OceanaGold by myself utilising an experienced *Kauri Gold* assistant under my supervision. An experienced contract surveyor assisted with the baseline levelling on the State Highways when a shadow vehicle was used to satisfy the roading authorities.

The following notes (in red) are from my May 2021 report.

## Levelling for November 2021?

The relatively large misclose of -38.7 mm on the baseline AP19 to BUH5 is a feature of this levelling event. This misclose caused me to check the 'old' staff against the new staff – to find the following:

between two marks using the new staff the difference was 1.84774 metres then 1.84866 metres using the 'old' staff. This 0.92 millimetres is just measurable with a 5 metre builders steel tape across the 2 pieces of the 'old' and new staffs and confirmed the new staff was consistent with the steel builders tape. This - 0.00092 metre difference (over say 2 metres vertical) probably accounts for some of -0.0387 metre misclose. Note the elevation difference used between 'control' marks AP19 and BUH5 is 59.2636 metres.

(59.2636/2)\*(-0.00092) = -.02726

The -ve change in reduced levels on higher elevations (particularly on the north side of the pit) using the new staff is consistent with the above discussion.

The baseline misclose for the next levelling event will be of much interest and may provide some basis for minor adjustments to the elevations of the 'control' marks.

Equipment used for this November 2021 event was the LEICA DNA03 electronic digital level (SN330350) paired with the **new** LEICA 3 section 4.05 metre fibreglass bar coded GKNL4F staff. To minimise 'windage', the staff was used in 2 section 'mode'. The level was serviced and check calibrated by the supplier in March 2021. A field calibration check was carried out by myself before commencing this event and the check result was satisfactory.

The unadjusted level traverses for this event between bench marks AP19 through 34BE to BUH5 were compared with those unadjusted elevations for the May event. An unadjusted level run was then taken off this base line from 34BE south to C1 and compared with unadjusted elevations for the May event. The levelling was extended south from C1 to AP26 at Waimata. A further check levelling traverse was extended via Baxter road to ABE4 on Waihi Beach Road. These traverses are shown on an A3 plan (T20211213A) with the numbers and logic used to modify the control elevations for BUH5 and C1. These control elevation adjustments are tabulated below.

|           | Control   | Elevation | Control     | Elevation | Difference |
|-----------|-----------|-----------|-------------|-----------|------------|
|           | (Borough) |           | (Borough)   |           |            |
| Mark I.D. | May 2021  |           | November 20 | 021       |            |
| AP19      | -6.5213   |           | -6.5213     |           | 0          |
| BUH5      | 52.7423   |           | 52.7029     |           | -0.0394    |
| C1        | 32.8245   |           | 32.8139     |           | -0.0106    |

With reference to plan T20211213A, by applying + 76.8164 metres to the 'Borough' values, then the elevations can be compared to the Auckland Vertical Datum 1946 (AKVD) elevations shown in the LINZ geodetic database. The compared elevations for AP26 and ABE4 are in reasonable agreement with AKVD values rather than New Zealand Vertical Datum 2016 values. Note AP24 and AP25 have been lost to road improvements.

Using the framework provided by the November 2021 control mark traverses, the many remaining monitoring marks were levelled from the control baselines and adjusted using LEICA LEVELPAK-PRO software.

A summary of the above framework 'misclosures' for the last thirty events is tabulated below.

| Event    | West –East misclose (mm) | North –South misclose (mm) |
|----------|--------------------------|----------------------------|
|          | AP2 > 34BE > AP1         | 34BE > AP6                 |
| May 2007 | +2.4                     | +6.4                       |
| Nov 2007 | +2.7                     | +3.1                       |
| May 2008 | +13.2                    | +4.0                       |
| Nov 2008 | -8.1                     | +7.3                       |
| May2009  | +8.8                     | +3.7                       |
| Nov 2009 | -5.8                     | +2.0                       |
| May 2010 | -8.1                     | +4.3                       |
| Nov 2010 | -0.6                     | +6.4                       |
| May 2011 | +2.0                     | +2.7                       |
| Nov 2011 | +6.9                     | +6.5                       |
| May 2012 | +4.1                     | +6.7                       |
| Nov 2012 | +23.3                    | +5.3                       |
| May 2013 | +2.7                     | +9.5                       |
| Nov 2013 | -0.9                     | +4.5                       |

| Nov 2014 -1.1 +11.5  Nov 2014 -2.6 +7.0  May 2015 +1.6 +6.3  Nov 2015 -8.0 +10.3  May 2016 +9.2 +12.2  AP20 No 2 > AP2 > 34BE > AP1 34BE > AP6  Nov 2016 +14.2 +3.6  AP19 > AP2 > 34BE > AP1 34BE > AP6  May 2017 +1.0 +0.4  Nov 2017 -10.2 -0.5  May 2018 +6.4 +4.0  Nov 2018 -11.1 +3.6  AP19 > AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 See page 2 See page 2  AP19 > AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 -7.9 -6.9  AP19 > AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 +0.3 -1.3  AP19 > AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 -5.5 -1.7  Nov 2020 -3.2 -2.5  May 2021 -38.7 -9.2  Nov 2021 -0.8 +1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May 2014 | -1.1                        | +11.5              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|--------------------|
| May 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                             |                    |
| Nov 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nov 2014 | -2.6                        | +7.0               |
| May 2016       +9.2       +12.2         AP20 No 2 > AP2 > 34BE > AP1       34BE > AP6         Nov 2016       +14.2       +3.6         AP19 > AP2 > 34BE > AP1       34BE > AP6         May 2017       +1.0       +0.4         Nov 2017       -10.2       -0.5         May 2018       +6.4       +4.0         Nov 2018       -11.1       +3.6         AP19 > AP2 > 34BE > AP1 > BUH5       34BE > AP6         May 2019       See page 2       See page 2         AP19 > AP2 > 34BE > AP1 > BUH5       34BE > AP6         May 2019       -7.9       -6.9         AP19 > AP2 > 34BE > AP1 > BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 > AP2 > 34BE > AP1 > BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May 2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | May 2015 | +1.6                        | +6.3               |
| AP20 No 2 > AP2 > 34BE > AP1  AP20 No 2 > AP2 > 34BE > AP1  34BE > AP6  H14.2  43.6  AP19 > AP2 > 34BE > AP1  34BE > AP6  May 2017  +1.0  +0.4  Nov 2017  -10.2  -0.5  May 2018  +6.4  +4.0  Nov 2018  -11.1  AP19 > AP2 > 34BE > AP1>BUH5  34BE > AP6  May 2019  See page 2  AP19 > AP2 > 34BE > AP1>BUH5  34BE > AP6  May 2019  AP19 > AP2 > 34BE > AP1>BUH5  34BE > AP6  May 2019  AP19 > AP2 > 34BE > AP1>BUH5  34BE > AP6  AP19 > AP2 > 34BE > AP1>BUH5  34BE > AP6  AP19 > AP2 > 34BE > AP1>BUH5  AP19 > AP2 > 34BE > AP24A> C1  AP19 > AP2 > 34BE > AP1>BUH5  AP19 > AP2 > 34BE > AP24A> C1  AP19 > AP2 > 34BE > AP1>BUH5  AP19 > AP24A> C1  AP19 > AP24A> C1 | Nov 2015 | -8.0                        | +10.3              |
| Nov 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May 2016 | +9.2                        | +12.2              |
| May 2017       +1.0       +0.4         Nov 2017       -10.2       -0.5         May 2018       +6.4       +4.0         Nov 2018       -11.1       +3.6         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP6         May 2019       See page 2       See page 2         May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | AP20 No 2 >AP2 > 34BE > AP1 | 34BE > AP6         |
| May 2017       +1.0       +0.4         Nov 2017       -10.2       -0.5         May 2018       +6.4       +4.0         Nov 2018       -11.1       +3.6         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP6         May 2019       See page 2       See page 2         May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nov 2016 | +14.2                       | +3.6               |
| Nov 2017 -10.2 -0.5  May 2018 +6.4 +4.0  Nov 2018 -11.1 +3.6  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 See page 2 See page 2  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 -7.9 -6.9  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 +0.3 -1.3  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> C1  May 2020 -5.5 -1.7  Nov 2020 -3.2 -2.5  May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | AP19 >AP2 > 34BE > AP1      | 34BE > AP6         |
| May 2018       +6.4       +4.0         Nov 2018       -11.1       +3.6         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP6         May 2019       See page 2       See page 2         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP6         May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May 2017 | +1.0                        | +0.4               |
| Nov 2018 -11.1 +3.6  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 See page 2 See page 2  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 -7.9 -6.9  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 +0.3 -1.3  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> C1  May 2020 -5.5 -1.7  Nov 2020 -3.2 -2.5  May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nov 2017 | -10.2                       | -0.5               |
| AP19 >AP2 > 34BE > AP1>BUH5  See page 2  See page 2  AP19 >AP2 > 34BE > AP1>BUH5  AP19 >AP2 > 34BE > AP24A> C1  May 2020  -5.5  -1.7  Nov 2020  -3.2  -2.5  May2021  -38.7  -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May 2018 | +6.4                        | +4.0               |
| May 2019       See page 2       See page 2         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP6         May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nov 2018 | -11.1                       | +3.6               |
| AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP6  May 2019 -7.9 -6.9  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 +0.3 -1.3  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> C1  May 2020 -5.5 -1.7  Nov 2020 -3.2 -2.5  May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP6         |
| May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May 2019 | See page 2                  | See page 2         |
| May 2019       -7.9       -6.9         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> 34BE         Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                             |                    |
| AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> 34BE  Nov 2019 +0.3 -1.3  AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> C1  May 2020 -5.5 -1.7  Nov 2020 -3.2 -2.5  May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP6         |
| Nov 2019       +0.3       -1.3         AP19 >AP2 > 34BE > AP1>BUH5       34BE > AP24A> C1         May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May 2019 | -7.9                        | -6.9               |
| AP19 >AP2 > 34BE > AP1>BUH5 34BE > AP24A> C1  May 2020 -5.5 -1.7  Nov 2020 -3.2 -2.5  May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP24A> 34BE |
| May 2020       -5.5       -1.7         Nov 2020       -3.2       -2.5         May2021       -38.7       -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nov 2019 | +0.3                        | -1.3               |
| Nov 2020 -3.2 -2.5<br>May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | AP19 >AP2 > 34BE > AP1>BUH5 | 34BE > AP24A> C1   |
| May2021 -38.7 -9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May 2020 | -5.5                        | -1.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nov 2020 | -3.2                        | -2.5               |
| Nov 2021 -0.8 +1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May2021  | -38.7                       | -9.2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nov 2021 | -0.8                        | +1.7               |

# **Extending Levelling**

This levelling event included LINZ benchmarks AP2, AP20 No 2, AP19, (to the west of Waihi), AP1 and BUH5 (to the east of Waihi). AP24 a.k.a control mark AP6 (south of Waihi) and AP25 have been lost to road works. AP24A and C1 have been established as a replacement for the lost AP6 control mark in this vicinity. AP2 and AP20 No 2 have now been 'unfixed' and AP19 is the fixed benchmark west of Waihi. The 'fixed' elevation value for AP19 was deduced from LINZ data comparing the relative levels of AP19, AP2, AP20 No2, and AP24 dating back to the year 1990. East of Waihi, AP1 is now 'unfixed, and there has never been any LINZ data for this mark although AP1 appears to be constructed to the same specifications as AP19 and AP26. The R.L. for the 'new' fixed eastern control mark (BUH5) was the mean value from two close values (relative to AP19) levelled in May 2021 and Nov 2021.

# **Photographs**

The order of levelling of the monitoring points has now been fixed. This has been achieved by photographing all of the settlement points and placing them in 22 albums –generally in the order the points are to be levelled. This will achieve repeatable error distribution and should therefore give better results. I believe **all** the marks now have accurate GPS fixes. In the future, this should make the task of locating these marks easier if the marks are covered over by re-seal etc, or quickly confirm if the marks have definitely been 'lost' to street maintenance etc.

I recommend continuing these 'maintenance' details before or during the next levelling event.

# **Adjustments**

Disturbed marks BM20 and 2.44 are excluded from the settlement contouring- as are marks F18, F20, F23, F24, and F25. Mark 2.28 has been disturbed by residential construction activity. Mark 2.11C is a new mark. All the above marks are excluded from the settlement contouring.

#### Results

One A1 plan is attached -colour coded by seven zones as identified in the 'Settlement and Groundwater Monitoring Plan. The original Zone boundaries and 'trigger' settlement values have been modified to match *Engineering Geology Ltd* Drawing No. 8332-Fig 16.

This plan "Total Settlement Contours" (T20220123A) identifies all marks (in black) that have been used to produce the contours for the plan. The plan shows total movement (in millimetres) at the monitoring mark itself. Missed, 'lost', or disturbed marks are shown in red and these marks are not used for contouring. New marks are also shown in red and generally not used for settlement contouring until the next levelling event.

This plan also displays settlement contours in 20mm intervals. The Settlement and Groundwater Monitoring Plan identifies gradients steeper than 1:1000 to be cause for concern. BM20 has been a large mover in the past and has been identified in past surveys as being placed on shrinking material. There are no buildings in this area anymore. I understand (from Mark Halloran) BM20A was placed near BM20 with a 'foot' bedded in firm ground. Significant differential settlement (1:122) is now occurring between BM20A and BM20 –sufficient to decide to omit BM20 from the settlement 'contour' calculation.

These contours represent the total negative (-ve) movement (or settlement) around Waihi since monitoring began.

The closest contours (omitting disturbed marks) are between marks 20AC and BM20A. The distance between these marks using GPS measurements, calculates at 126.706 metres, and show 0.1817 metres of relative vertical movement to give a gradient of 1:697. The distance between marks BM20A and 20D using GPS measurements, calculates at 137.047 metres, and shows 0.1593 metres of relative vertical movement to give a gradient of 1:860. The distance between marks 20C and BM20A, when checked by GPS measurements, calculates at 126.865 metres, and show 0.1268 metres of relative vertical movement to give a gradient of 1:1001.

Some cracks are visible in the sealed pavements in this area of closest contours.

Table 1 (pages 4-12) lists all the marks used for this settlement levelling event with the marks sorted first by Zone and then by settlement value. Marks that record 'exceedences' in terms of zone predictions (for Martha (2019) are highlighted with colour and have comments attached. All marks that 'exceeded' in Table 1 were analysed further and field inspections were conducted where required.

The comments included below attempt to explain the probable reason for 'excess' movement. The comments are *Dist'd* for BM20 in Zone 6. In Zone 4, the comment is '*Nr watercourse*' for 23C. The swampy(?) ground may have de-watered during the autumn drought. For Zone 3, 2CE is near Zone 5. For Zone 2, 3.14 is near Zone 4. For Zone 1, 2.44 is *Dist'd*, 2.05 is near Zone 5, 2.35, 31DD and 31FC.are near Zone 3, and 31KC, 31LC, 31MD, and 31NE are near the Ohinemuri River bridge.31HC is near Zone 3. 31GC is near Zone 3.

The 'Favona' marks were installed for monitoring the effects of dewatering in the original underground mine area. The underlying original 'Martha' zone was Zone 3 and but the Favona marks were never given zone exceedence parameters in terms of the original Martha zones. The Favona marks all report significant settlement. Note marks F18, F20, F23, F24, F25 are tentatively labelled as 'Dist'd' and not used for contouring the settlement.

The five extra 'Favona' settlement marks are again shown on the plan. These are FP1, BLOCK-S, BLOCK-N, TRIG 22, and TRIG 24. The settlements for these marks have generally been deduced relative to original reduced levels measured around the year 1987 –although FP1 (at the Favona portal) was established about the year 2000. Favona mark F07 is disturbed but has been relabelled as F07A. A 'previous history' has been calculated for F07A so this mark can be used for settlement contouring. The underlying zone for the Favona marks is now Zone 5 Martha (2019).

I understand that Time-History plots for all survey marks grouped by zone will be produced by other persons in accordance with the "Settlement and Groundwater Monitoring Plan 31 July 2005"



Bruce Morrison

Registered Professional Surveyor

Table 1. Total Movement

|       | station | SURVEY    |         |          | TOTAL   | SETTLEME | NT       |
|-------|---------|-----------|---------|----------|---------|----------|----------|
| Zone  | I.D.    | DATE      | X       | Υ        | Z       | Nov-21   | Comments |
| Zone7 | BM19B   | 1/11/2021 | 2117.17 | 1244.355 | 35.53   | -0.336   |          |
| Zone7 | 19BB    | 1/11/2021 | 2191.56 | 1292.022 | 35.5259 | -0.3319  |          |
| Zone7 | 17CB    | 1/11/2021 | 2014.23 | 1201.01  | 35.4606 | -0.313   |          |
| Zone6 | BM20    | 1/11/2021 | 2342.5  | 1476.25  | 35.5779 | -0.4029  | dist'd   |
| Zone6 | BM20A   | 1/11/2021 | 2345.5  | 1484.9   | 35.7491 | -0.3281  |          |

| Zone6 | 19CB  | 1/11/2021 | 2296.71 | 1381.4   | 34.9173 | -0.3126 |       |
|-------|-------|-----------|---------|----------|---------|---------|-------|
| Zone6 | 17BB  | 1/11/2021 | 1919.52 | 1160.787 | 37.355  | -0.276  |       |
| Zone6 | 17AB  | 1/11/2021 | 1841.32 | 1104.802 | 36.8745 | -0.2408 |       |
| Zone6 | 34GC  | 1/11/2021 | 2211.33 | 1119.517 | 32.1258 | -0.226  |       |
| Zone6 | 2.04B | 1/11/2021 | 1893.21 | 968.34   | 29.0835 | -0.2073 |       |
| Zone6 | 34H   | 1/11/2021 | 2233.59 | 970.561  | 32.1484 | -0.1987 |       |
| Zone6 | 18EE  | 1/11/2021 | 1750.73 | 809.328  | 23.4266 | -0.1948 |       |
| Zone6 | 18C   | 1/11/2021 | 1494.95 | 767.193  | 27.4607 | -0.1942 |       |
| Zone6 | 2.10  | 1/11/2021 | 2143.92 | 950.387  | 30.2764 | -0.1925 |       |
| Zone6 | 18IB  | 1/11/2021 | 1611.19 | 784.79   | 25.8231 | -0.1923 |       |
| Zone6 | 34AD  | 1/11/2021 | 1470.88 | 886.92   | 29.756  | -0.1908 |       |
| Zone6 | 34BE  | 1/11/2021 | 1732.56 | 931.603  | 28.3263 | -0.1804 |       |
| Zone6 | 34C   | 1/11/2021 | 1968.9  | 982.673  | 30.0984 | -0.1715 |       |
| Zone6 | BM34  | 1/11/2021 | 1528.38 | 903.297  | 30.3118 | -0.1713 |       |
| Zone6 | 10BC  | 1/11/2021 | 1560.13 | 1062.92  | 38.0983 | -0.1693 |       |
| Zone6 | 34FC  | 1/11/2021 | 2120.79 | 587.93   | 19.0375 | -0.1685 | dist? |
| Zone6 | 11AC  | 1/11/2021 | 1308.26 | 859.512  | 29.3311 | -0.1658 |       |
| Zone6 | 10AB  | 1/11/2021 | 1430.61 | 1036.998 | 34.9914 | -0.1616 |       |
| Zone6 | 18AB  | 1/11/2021 | 1632.39 | 667.733  | 22.1344 | -0.157  |       |
| Zone6 | BM17A | 1/11/2021 | 1724.44 | 1088.919 | 40.0316 | -0.1566 |       |
| Zone6 | 2.08B | 1/11/2021 | 2289.75 | 782.64   | 24.5305 | -0.1559 |       |
| Zone6 | 1.28B | 1/11/2021 | 1987.03 | 447.71   | 12.097  | -0.1479 |       |
| Zone6 | 2.09C | 1/11/2021 | 2228.35 | 868.63   | 28.6371 | -0.1468 |       |
| Zone6 | 341   | 1/11/2021 | 2229.55 | 765.53   | 28.4586 | -0.1396 |       |
| Zone6 | 2.06  | 1/11/2021 | 2351.95 | 334.473  | 11.2785 | -0.1232 |       |
|       |       |           |         |          |         | new     |       |
| Zone6 | 2.11C | 1/11/2021 |         | 896.99   | 26.6088 | mark    |       |
| Zone5 | 20C   | 1/11/2021 | 2450.61 | 1413.86  | 36.3061 | -0.2013 |       |
| Zone5 | 21DC  | 1/11/2021 | 2573.96 | 1304.152 | 37.7516 | -0.1881 |       |
| Zone5 | A10B  | 1/11/2021 | 1298.62 | 1049.61  | 30.6793 | -0.1875 |       |
| Zone5 | 20E   | 1/11/2021 | 2535.65 | 1542.672 | 37.0739 | -0.1869 |       |
| Zone5 | 25D   | 1/11/2021 | 2547.05 |          | 36.856  | -0.1848 |       |
| Zone5 | A11D  | 1/11/2021 | 1277.04 |          | 30.8433 | -0.1801 |       |
| Zone5 | 25A   | 1/11/2021 | 2505.13 | 1203.77  | 35.9301 | -0.1797 |       |
| Zone5 | 210   | 1/11/2021 | 2527.37 | 1356.342 | 35.9967 | -0.1791 |       |
| Zone5 | 25E   | 1/11/2021 | 2472.35 | 1162.013 | 34.7658 | -0.1777 |       |

| Zone5 | 16BC  | 1/11/2021 | 1252.81 | 1336.473 | 39.4504 | -0.1771 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone5 | BM25  | 1/11/2021 | 2424.91 | 1100.253 | 33.472  | -0.1761 |
| Zone5 | 21N   | 1/11/2021 | 2623.25 | 1342.435 | 38.2797 | -0.1693 |
| Zone5 | 20D   | 1/11/2021 | 2482.07 | 1473.478 | 36.5486 | -0.1688 |
| Zone5 | 10DC  | 1/11/2021 | 1279.04 | 1198.326 | 35.2986 | -0.1665 |
| Zone5 | 25G   | 1/11/2021 | 2594.6  | 1149.415 | 37.5795 | -0.165  |
| Zone5 | 25H   | 1/11/2021 | 2648.48 | 1232.956 | 38.911  | -0.1647 |
| Zone5 | 25CB  | 1/11/2021 | 2615.91 | 1190.496 | 38.2867 | -0.1646 |
| Zone5 | BM16  | 1/11/2021 | 1418.09 | 1218.03  | 46.4309 | -0.1635 |
| Zone5 | 2.41  | 1/11/2021 | 3296.32 | 685.398  | 46.2532 | -0.1632 |
| Zone5 | 25F   | 1/11/2021 | 2542.53 | 1116.24  | 35.9898 | -0.1631 |
| Zone5 | 241   | 1/11/2021 | 2692.57 | 1269.713 | 39.2749 | -0.1626 |
| Zone5 | 10CB  | 1/11/2021 | 1222.46 | 1025.855 | 29.7704 | -0.1617 |
| Zone5 | 25B   | 1/11/2021 | 2497.67 | 1105.828 | 34.8163 | -0.1607 |
| Zone5 | 12CE  | 1/11/2021 | 1499.92 | 543.077  | 20.978  | -0.1574 |
| Zone5 | 2.03  | 1/11/2021 | 1930.08 | 745.943  | 22.5866 | -0.1568 |
| Zone5 | 34EB  | 1/11/2021 | 2073.93 | 705.952  | 24.6316 | -0.156  |
| Zone5 | 18F   | 1/11/2021 | 1752.28 | 551.03   | 17.3256 | -0.1555 |
| Zone5 | 13AC  | 1/11/2021 | 1751.98 | 327.376  | 18.5898 | -0.1551 |
| Zone5 | BM12  | 1/11/2021 | 1370.27 | 607.735  | 23.9524 | -0.1543 |
| Zone5 | 24L   | 1/11/2021 | 2761.67 | 1181.326 | 39.3241 | -0.1541 |
| Zone5 | 2.02  | 1/11/2021 | 1992.61 | 536.097  | 15.2684 | -0.1532 |
| Zone5 | 21C   | 1/11/2021 | 2651.57 | 1389.816 | 38.4599 | -0.1523 |
| Zone5 | 24DC  | 1/11/2021 | 2718.29 | 1323.13  | 39.6287 | -0.1521 |
| Zone5 | 18B   | 1/11/2021 | 1510.36 | 650.578  | 23.5552 | -0.1518 |
| Zone5 | 18G   | 1/11/2021 | 1669.05 | 554.602  | 18.4714 | -0.1514 |
| Zone5 | 251   | 1/11/2021 | 2537.2  | 1045.036 | 34.6823 | -0.1504 |
| Zone5 | 34D   | 1/11/2021 | 2038.9  | 783.43   | 25.3364 | -0.1497 |
| Zone5 | 24K   | 1/11/2021 | 2783.89 | 1387.719 | 40.6102 | -0.1477 |
| Zone5 | 2A    | 1/11/2021 | 1069.03 | 1111.858 | 23.7955 | -0.1473 |
| Zone5 | 1.28A | 1/11/2021 | 1888.26 | 505.887  | 13.2082 | -0.1473 |
| Zone5 | 24AC  | 1/11/2021 | 2743.58 | 1218.9   | 40.089  | -0.1464 |
| Zone5 | 20AC  | 1/11/2021 | 2461.04 | 1536.905 | 37.0127 | -0.1464 |
| Zone5 | 22F   | 1/11/2021 | 2815.91 | 1325.407 | 40.2314 | -0.1461 |
| Zone5 | 21EB  | 1/11/2021 | 2799.95 | 1429.087 | 41.6275 | -0.1461 |
|       |       |           |         |          |         |         |

| Zone5 | BM18  | 1/11/2021 | 1771.96 | 674.53   | 19.4245 | -0.1459 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone5 | 24E   | 1/11/2021 | 2758.43 | 1303.234 | 40.3628 | -0.1453 |
| Zone5 | 24F   | 1/11/2021 | 2772.8  | 1257.274 | 40.129  | -0.1447 |
| Zone5 | BM24  | 1/11/2021 | 2794.55 | 1279.361 | 40.399  | -0.1441 |
| Zone5 | 24J   | 1/11/2021 | 2749.39 | 1365.756 | 40.2273 | -0.1438 |
| Zone5 | 13BC  | 1/11/2021 | 1850.36 | 246.587  | 13.7182 | -0.1428 |
| Zone5 | 12DC  | 1/11/2021 | 1596.95 | 435.491  | 19.9637 | -0.1418 |
| Zone5 | 15A   | 1/11/2021 | 1204.79 | 818.863  | 28.7677 | -0.141  |
| Zone5 | 12AC  | 1/11/2021 | 1388.32 | 488.888  | 19.0446 | -0.1405 |
| Zone5 | 18HC  | 1/11/2021 | 1821.52 | 466.47   | 14.8874 | -0.1405 |
| Zone5 | 24G   | 1/11/2021 | 2705.96 | 1170.464 | 39.8029 | -0.1399 |
| Zone5 | 20BB  | 1/11/2021 | 2533.26 | 1622.291 | 37.8716 | -0.1395 |
| Zone5 | 24CD  | 1/11/2021 | 2603.21 | 987.721  | 34.8297 | -0.1393 |
| Zone5 | 24B   | 1/11/2021 | 2667.67 | 1126.399 | 39.3834 | -0.1379 |
| Zone5 | 21M   | 1/11/2021 | 2694.9  | 1439.648 | 39.1778 | -0.1377 |
| Zone5 | 15BC  | 1/11/2021 | 1169.9  | 708.855  | 26.3298 | -0.1351 |
| Zone5 | 24H   | 1/11/2021 | 2630.7  | 1072.279 | 36.1596 | -0.1342 |
| Zone5 | AP22A | 1/11/2021 | 1868.44 | 188.57   | 12.4049 | -0.1341 |
| Zone5 | 11BB  | 1/11/2021 | 1348.57 | 710.573  | 26.9261 | -0.1328 |
| Zone5 | 20F   | 1/11/2021 | 2605.79 | 1575.98  | 37.569  | -0.1326 |
| Zone5 | 4DB   | 1/11/2021 | 1033.26 | 1550.66  | 32.2471 | -0.1307 |
| Zone5 | 1.10A | 1/11/2021 | 1599.7  | 278.938  | 16.633  | -0.1305 |
| Zone5 | 12BC  | 1/11/2021 | 1405.27 | 368.295  | 14.9178 | -0.1299 |
| Zone5 | BM21  | 1/11/2021 | 2654.8  | 1515.4   | 39.4235 | -0.1299 |
| Zone5 | 21BC  | 1/11/2021 | 2719.27 | 1477.799 | 41.2659 | -0.129  |
| Zone5 | BM13  | 1/11/2021 | 1426.61 | 269.34   | 13.5764 | -0.1287 |
| Zone5 | 21K   | 1/11/2021 | 2681.11 | 1572.207 | 39.9984 | -0.1269 |
| Zone5 | 2.17A | 1/11/2021 | 3085.76 | 555.866  | 36.9049 | -0.1246 |
| Zone5 | 4B    | 1/11/2021 | 1021.54 | 1448.629 | 31.2501 | -0.1243 |
| Zone5 | 2BC   | 1/11/2021 | 970.2   | 1241.898 | 30.3836 | -0.1224 |
| Zone5 | 30C   | 1/11/2021 | 2573.54 | 1675.395 | 38.4389 | -0.115  |
| Zone5 | вм9в  | 1/11/2021 | 1220.25 | 1523.29  | 34.7477 | -0.1097 |
| Zone5 | 7CB   | 1/11/2021 | 1161.74 | 1597.63  | 30.6078 | -0.108  |
| Zone5 | AP3   | 1/11/2021 | 918.94  | 1140.585 | 26.0637 | -0.1066 |
| Zone5 | 26EE  | 1/11/2021 | 1343.86 | 1621.82  | 44.2896 | -0.0923 |
|       |       |           |         |          |         |         |

| Zone5 | 26Q      | 1/11/2021 | 1963    | 1982.71  | 73.6633 | -0.0878 |                |
|-------|----------|-----------|---------|----------|---------|---------|----------------|
| Zone5 | 26R      | 1/11/2021 | 1905.59 | 1927.165 | 71.3482 | -0.087  |                |
| Zone5 | 26PB     | 1/11/2021 | 1834.84 | 1893.106 | 67.9362 | -0.0864 |                |
| Zone5 | 26F      | 1/11/2021 | 1392.77 | 1680.26  | 43.8552 | -0.0847 |                |
| Zone4 | 23C      | 1/11/2021 | 2856.14 | 1068.014 | 37.5515 | -0.2146 | Nr watercourse |
| Zone4 | 23AB     | 1/11/2021 | 3145.42 | 1078.732 | 37.1894 | -0.1824 | Nr 23C?        |
| Zone4 | 2.28     | 1/11/2021 | 3076.72 | 1555.994 | 42.8967 | -0.1738 | dist'd?        |
| Zone4 | 22C      | 1/11/2021 | 2846.39 | 1352.544 | 40.3125 | -0.1668 | Nr Zone 5      |
| Zone4 | 2.24     | 1/11/2021 | 2885.91 | 1215.469 | 41.2819 | -0.1651 | Nr Zone 5      |
| Zone4 | 23D      | 1/11/2021 | 2861.42 | 1154.885 | 38.8562 | -0.1607 | Nr 23C         |
| Zone4 | BANK1    | 1/11/2021 | 2866.21 | 1023.248 | 37.794  | -0.1603 | Nr 23C         |
| Zone4 | 2.25     | 1/11/2021 | 2874.51 | 1097.261 | 37.9796 | -0.1556 |                |
| Zone4 | 23B      | 1/11/2021 | 2856.49 | 949.794  | 38.7446 | -0.1555 |                |
| Zone4 | 2.14A    | 1/11/2021 | 2853.28 | 838.669  | 41.3158 | -0.1518 |                |
| Zone4 | 2.19B    | 1/11/2021 | 3270.21 | 916.063  | 38.5572 | -0.1517 |                |
| Zone4 | 23E      | 1/11/2021 | 2774.82 | 972.514  | 37.7098 | -0.1517 |                |
| Zone4 | MATAURA1 | 1/11/2021 | 2831.84 | 1250.806 | 41.0682 | -0.1516 |                |
| Zone4 | 22GB     | 1/11/2021 | 2862.88 | 1387.968 | 40.8429 | -0.1513 |                |
| Zone4 | BARRY1   | 1/11/2021 | 3047.74 | 926.576  | 38.1141 | -0.1507 |                |
| Zone4 | MORTON   | 1/11/2021 | 2975.42 | 1231.913 | 40.7141 | -0.1456 |                |
| Zone4 | BARRY3   | 1/11/2021 | 3176.85 | 895.991  | 37.6854 | -0.1452 |                |
| Zone4 | 2.18     | 1/11/2021 | 3218.04 | 712.756  | 44.5419 | -0.1448 |                |
| Zone4 | BARRY4B  | 1/11/2021 | 3320.16 | 912.693  | 38.8867 | -0.1439 |                |
| Zone4 | BARRY5   | 1/11/2021 | 3397.59 | 904.647  | 40.99   | -0.1424 |                |
| Zone4 | 23F      | 1/11/2021 | 2700.77 | 968.793  | 36.6558 | -0.1418 |                |
| Zone4 | BARRY6   | 1/11/2021 | 3432.52 | 904.356  | 42.4759 | -0.1414 |                |
| Zone4 | 22E      | 1/11/2021 | 3055.2  | 1231.504 | 40.7823 | -0.1412 |                |
| Zone4 | 2.13     | 1/11/2021 | 2725.42 | 874.951  | 47.215  | -0.1409 |                |
| Zone4 | BARRY2   | 1/11/2021 | 2936.96 | 944.224  | 38.3555 | -0.1401 |                |
| Zone4 | 2.23     | 1/11/2021 | 3560.02 | 1212.795 | 36.6333 | -0.1392 |                |
| Zone4 | 2HB      | 1/11/2021 | 1078.24 | 886.85   | 24.3865 | -0.1388 |                |
| Zone4 | BM23     | 1/11/2021 | 3107.42 | 921.049  | 38.0888 | -0.1383 |                |
| Zone4 | 1.11B    | 1/11/2021 | 1675.83 | 133.622  | 9.025   | -0.138  |                |
| Zone4 | STAFORD  | 1/11/2021 | 3139.86 | 998.179  | 37.3163 | -0.1379 |                |
| Zone4 | 2.20     | 1/11/2021 | 3467.69 | 904.56   | 43.7838 | -0.1373 |                |
|       |          |           |         |          |         |         |                |

| Zone4 | 22BC        | 1/11/2021 | 2916.75 | 1435.773 | 42.105  | -0.1368 |
|-------|-------------|-----------|---------|----------|---------|---------|
| Zone4 | 22H         | 1/11/2021 | 2869.25 | 1441.796 | 41.6224 | -0.1344 |
| Zone4 | 21P         | 1/11/2021 | 2849.17 | 1456.9   | 41.849  | -0.1343 |
| Zone4 | 221         | 1/11/2021 | 2918.98 | 1461.367 | 41.9153 | -0.1339 |
| Zone4 | 22M         | 1/11/2021 | 2973.44 | 1434.656 | 41.6725 | -0.1335 |
| Zone4 | 2.16        | 1/11/2021 | 3007.62 | 739.64   | 33.5954 | -0.1324 |
| Zone4 | 2.15        | 1/11/2021 | 2918.94 | 723.52   | 38.3654 | -0.1315 |
| Zone4 | 2.22        | 1/11/2021 | 3339.13 | 1206.603 | 40.3476 | -0.1302 |
| Zone4 | BARRY7      | 1/11/2021 | 3518.87 | 901.897  | 43.6117 | -0.1296 |
| Zone4 | GW          | 1/11/2021 | 3128.83 | 1140.936 | 38.5399 | -0.1295 |
| Zone4 | 22L         | 1/11/2021 | 3047.7  | 1499.876 | 40.9928 | -0.1289 |
| Zone4 | 2.21        | 1/11/2021 | 3563.09 | 1045.18  | 34.0308 | -0.1288 |
| Zone4 | AP100       | 1/11/2021 | 1893.8  | 81.273   | 11.7793 | -0.1285 |
| Zone4 | 22D         | 1/11/2021 | 3100.02 | 1335.441 | 41.4487 | -0.1274 |
| Zone4 | 22A         | 1/11/2021 | 3003.28 | 1429.771 | 41.6457 | -0.127  |
| Zone4 | CUBA        | 1/11/2021 | 3224.32 | 1079.177 | 35.8266 | -0.1266 |
| Zone4 | BARRY8      | 1/11/2021 | 3592.28 | 871.451  | 37.9353 | -0.1264 |
| Zone4 | <b>22</b> J | 1/11/2021 | 2944.47 | 1489.763 | 42.4259 | -0.1238 |
| Zone4 | BM2         | 1/11/2021 | 915.74  | 1091.799 | 24.827  | -0.1235 |
| Zone4 | 21FB        | 1/11/2021 | 2861.65 | 1512.211 | 42.6478 | -0.1225 |
| Zone4 | 1.05        | 1/11/2021 | 1176.96 | 473.454  | 21.8173 | -0.1221 |
| Zone4 | 27KB        | 1/11/2021 | 2320.23 | 2120.21  | 63.3263 | -0.1193 |
| Zone4 | 21AC        | 1/11/2021 | 2716.64 | 1617.767 | 39.6903 | -0.1187 |
| Zone4 | 21L         | 1/11/2021 | 2806.79 | 1575.074 | 43.0857 | -0.1181 |
| Zone4 | 2.29B       | 1/11/2021 | 2953.39 | 1548.172 | 42.5895 | -0.1173 |
| Zone4 | BM22        | 1/11/2021 | 3115.79 | 1442.95  | 40.6173 | -0.1169 |
| Zone4 | 2.26        | 1/11/2021 | 3241.22 | 1380.889 | 39.2165 | -0.1167 |
| Zone4 | 1.26        | 1/11/2021 | 1926.81 | 30.053   | 15.0906 | -0.1162 |
| Zone4 | 26BE        | 1/11/2021 | 1408.78 | 1800.55  | 38.8101 | -0.116  |
| Zone4 | 2.27        | 1/11/2021 | 3379.4  | 1371.481 | 37.7558 | -0.1148 |
| Zone4 | 15C         | 1/11/2021 | 1156.82 | 571.08   | 24.2086 | -0.113  |
| Zone4 | 2GB         | 1/11/2021 | 922.38  | 967.661  | 22.6728 | -0.1127 |
| Zone4 | 21Q         | 1/11/2021 | 2899.6  | 1571.317 | 43.1257 | -0.1115 |
| Zone4 | 30BB        | 1/11/2021 | 2604.86 | 1726.5   | 41.5461 | -0.1088 |
| Zone4 | 26CE        | 1/11/2021 | 1377.77 | 1711.89  | 40.5949 | -0.1087 |
|       |             |           |         |          |         |         |

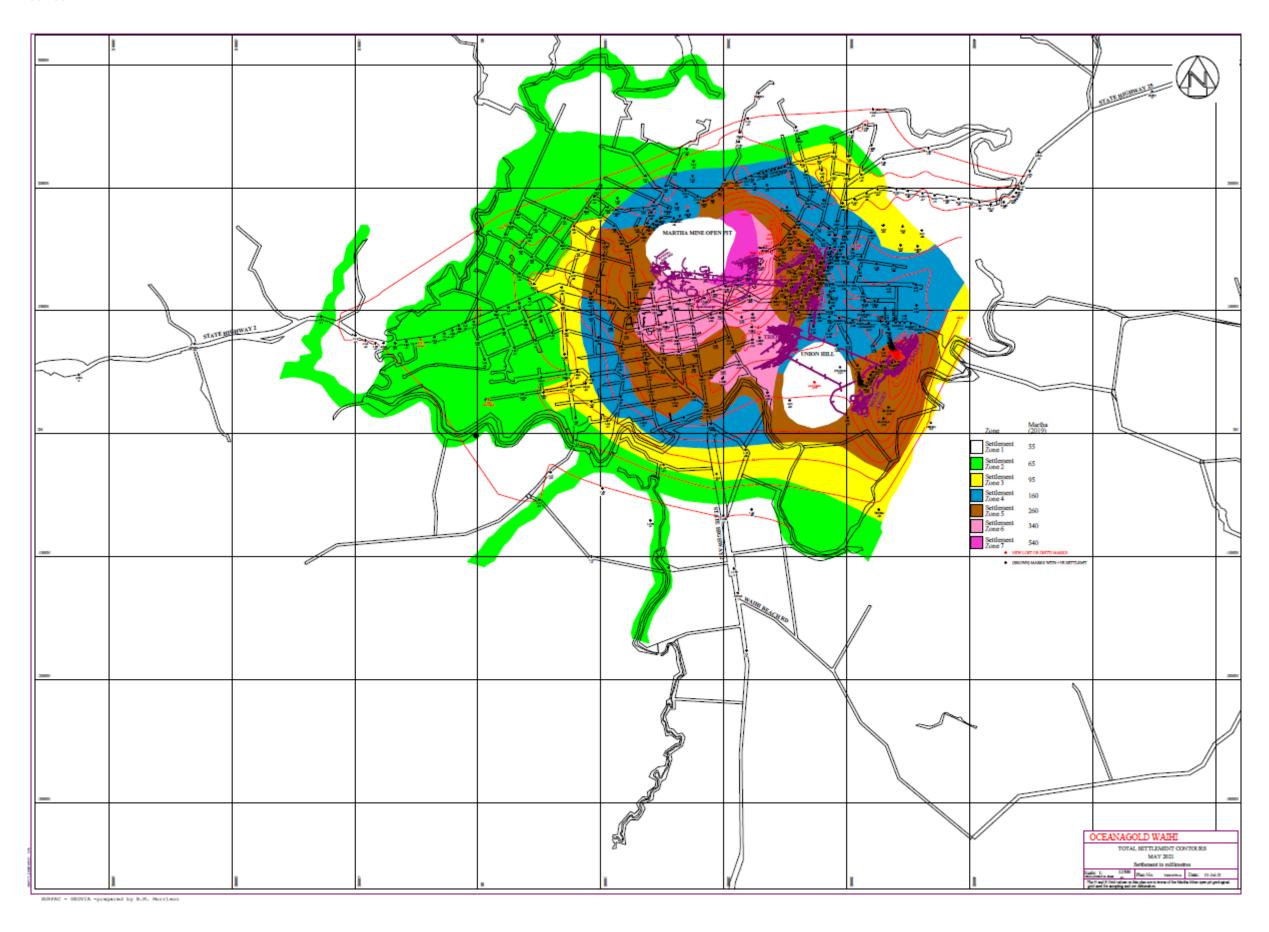
| Zone4 | 22KB  | 1/11/2021 | 2981.8  | 1603.49  | 42.8482 | -0.1085 |
|-------|-------|-----------|---------|----------|---------|---------|
| Zone4 | 1.06  | 1/11/2021 | 1159.34 | 302.262  | 17.2232 | -0.1079 |
| Zone4 | 211   | 1/11/2021 | 2854.7  | 1668.793 | 41.6432 | -0.1066 |
| Zone4 | 27N   | 1/11/2021 | 2179.57 | 2075.985 | 71.9054 | -0.1052 |
| Zone4 | 21GC  | 1/11/2021 | 2901.12 | 1614.05  | 43.4421 | -0.1047 |
| Zone4 | 21J   | 1/11/2021 | 2773.44 | 1688.923 | 39.9621 | -0.1046 |
| Zone4 | SM822 | 1/11/2021 | 2512.91 | 1841.132 | 41.4552 | -0.1029 |
| Zone4 | 27E   | 1/11/2021 | 2494.09 | 2171.622 | 50.3365 | -0.1017 |
| Zone4 | 4.08  | 1/11/2021 | 2350.64 | 2022.324 | 73.2058 | -0.1013 |
| Zone4 | 2.31B | 1/11/2021 | 3201.23 | 1637.289 | 42.0925 | -0.1008 |
| Zone4 | 1.09B | 1/11/2021 | 1344.14 | 117.48   | 9.9256  | -0.0995 |
| Zone4 | BM15  | 1/11/2021 | 976.94  | 783      | 20.5183 | -0.0982 |
| Zone4 | 2.30B | 1/11/2021 | 3000.35 | 1672.941 | 43.1698 | -0.0978 |
| Zone4 | 4.09  | 1/11/2021 | 2249.27 | 2029.944 | 78.9112 | -0.0975 |
| Zone4 | 21HC  | 1/11/2021 | 2916.84 | 1728.842 | 42.8807 | -0.0953 |
| Zone4 | 7BB   | 1/11/2021 | 1105.69 | 1689.9   | 35.9353 | -0.092  |
| Zone4 | 27H   | 1/11/2021 | 2413.27 | 2149.757 | 57.0198 | -0.0907 |
| Zone4 | 4.07  | 1/11/2021 | 2554.47 | 2079.237 | 45.0425 | -0.0906 |
| Zone4 | 27J   | 1/11/2021 | 2344.14 | 2136.138 | 62.1259 | -0.09   |
| Zone4 | 27G   | 1/11/2021 | 2440.97 | 2157.3   | 54.5557 | -0.0894 |
| Zone4 | 3.01  | 1/11/2021 | 1291.95 | 1690.33  | 37.2938 | -0.0857 |
| Zone4 | 26AE  | 1/11/2021 | 1432.47 | 1883.479 | 37.5475 | -0.0853 |
| Zone4 | 4.05  | 1/11/2021 | 2809.68 | 1897.682 | 40.6163 | -0.0851 |
| Zone4 | 26NC  | 1/11/2021 | 1641.16 | 1772.4   | 60.3849 | -0.085  |
| Zone4 | 271   | 1/11/2021 | 2385.1  | 2141.94  | 59.5224 | -0.085  |
| Zone4 | 3.04B | 1/05/2021 | 1123.76 | 1821.498 | 39.2814 | -0.0835 |
| Zone4 | 27F   | 1/11/2021 | 2466.48 | 2164.026 | 52.3133 | -0.0816 |
| Zone4 | 26H   | 1/11/2021 | 1452.9  | 1729.593 | 49.9581 | -0.0807 |
| Zone4 | 3.11A | 1/11/2021 | 1786.17 | 1929.216 | 62.1419 | -0.0802 |
| Zone4 | BM30  | 1/11/2021 | 2715.36 | 1996.207 | 44.0834 | -0.0802 |
| Zone4 | 26G   | 1/11/2021 | 1425.06 | 1706.748 | 46.9949 | -0.0799 |
| Zone4 | 26MB  | 1/11/2021 | 1593.46 | 1750.663 | 58.9635 | -0.0796 |
| Zone4 | 27M   | 1/11/2021 | 2224.38 | 2095.26  | 69.1482 | -0.0789 |
| Zone4 | 26JB  | 1/11/2021 | 1495.71 | 1756.55  | 53.7237 | -0.0787 |
| Zone4 | 261   | 1/11/2021 | 1481.67 | 1750.49  | 52.7223 | -0.0784 |

| Zone4 | 3.09  | 1/05/2021 | 1618.51 | 1870.17  | 51.9142 | -0.0778 |           |
|-------|-------|-----------|---------|----------|---------|---------|-----------|
| Zone4 | 27AB  | 1/11/2021 | 2009.08 | 2064.33  | 73.4729 | -0.0777 |           |
| Zone4 | 3.02  | 1/11/2021 | 1344.87 | 1837.74  | 34.9399 | -0.0773 |           |
| Zone4 | 30AB  | 1/11/2021 | 2685.64 | 1898.443 | 46.2329 | -0.0757 |           |
| Zone4 | 27L   | 1/11/2021 | 2280.24 | 2115.41  | 65.8328 | -0.0751 |           |
| Zone4 | 3.10A | 1/11/2021 | 1689.03 | 1978.29  | 53.4305 | -0.0739 |           |
| Zone4 | 270   | 1/11/2021 | 2101.57 | 2042.821 | 75.0172 | -0.0733 |           |
| Zone4 | 27DC  | 1/11/2021 | 2541.24 | 2190.709 | 48.1869 | -0.0726 |           |
| Zone4 | 3.13  | 1/11/2021 | 1744.89 | 2097.49  | 53.7553 | -0.0693 |           |
| Zone4 | BM26  | 1/11/2021 | 1542.45 | 1837.805 | 45.4187 | -0.0674 |           |
| Zone4 | 26OB  | 1/11/2021 | 1706.93 | 1812.27  | 67.1747 | -0.0601 |           |
| Zone4 | 3.6A  | 1/11/2021 | 1526.28 | 2015.74  | 38.9163 | -0.0493 |           |
| Zone3 | 2CE   | 1/11/2021 | 774.75  | 1313.191 | 34.6086 | -0.1173 | Nr Zone 5 |
| Zone3 | 2.34  | 1/11/2021 | 3452.45 | 1683.502 | 37.7074 | -0.1059 | Nr Zone 4 |
| Zone3 | 14DB  | 1/11/2021 | 876.99  | 411.215  | 15.1516 | -0.1022 | Nr Zone 4 |
| Zone3 | 2.36  | 1/11/2021 | 3433.14 | 1534.879 | 35.9196 | -0.0956 | Nr Zone 4 |
| Zone3 | 1.25  | 1/11/2021 | 2175.94 | -129.105 | 20.051  | -0.095  |           |
| Zone3 | 4.02  | 1/11/2021 | 2797.9  | 2143.571 | 45.7562 | -0.0929 |           |
| Zone3 | 2.40B | 1/11/2021 | 3572.85 | 1526.452 | 33.1473 | -0.0928 |           |
| Zone3 | 2.33  | 1/11/2021 | 3294.51 | 1691.952 | 40.3004 | -0.0925 |           |
| Zone3 | A33C  | 1/11/2021 | 456.03  | 1219.23  | 35.8481 | -0.0918 |           |
| Zone3 | 4A    | 1/11/2021 | 815.01  | 1494.154 | 40.6837 | -0.0887 |           |
| Zone3 | BM31  | 1/11/2021 | 2967.04 | 1873.48  | 43.2773 | -0.0882 |           |
| Zone3 | 4.03B | 1/11/2021 | 2794.9  | 2044.78  | 43.7928 | -0.0881 |           |
| Zone3 | 4EC   | 1/11/2021 | 782.01  | 1687.78  | 41.1216 | -0.0881 |           |
| Zone3 | 31BC  | 1/11/2021 | 3159.33 | 1954.86  | 45.4945 | -0.088  |           |
| Zone3 | 1.07  | 1/11/2021 | 924.43  | 267.49   | 12.4967 | -0.0869 |           |
| Zone3 | 2FC   | 1/11/2021 | 720.33  | 843.06   | 23.9204 | -0.0861 |           |
| Zone3 | 2DA   | 1/11/2021 | 682.15  | 1189.579 | 35.8042 | -0.0844 |           |
| Zone3 | 15DB  | 1/11/2021 | 917.56  | 466.148  | 15.5963 | -0.0837 |           |
| Zone3 | 4.01C | 1/11/2021 | 2891.78 | 2113.146 | 47.2946 | -0.0835 |           |
| Zone3 | 4.04  | 1/11/2021 | 2662.6  | 2131.77  | 45.9129 | -0.0823 |           |
| Zone3 | 14EA  | 1/11/2021 | 808.56  | 504.723  | 17.0871 | -0.0817 |           |
| Zone3 | 31AC  | 1/11/2021 | 3059.04 | 1910.63  | 44.0616 | -0.0809 |           |
| Zone3 | 14CB  | 1/11/2021 | 759.1   | 389.766  | 18.8156 | -0.0802 |           |
|       |       |           |         |          |         |         |           |

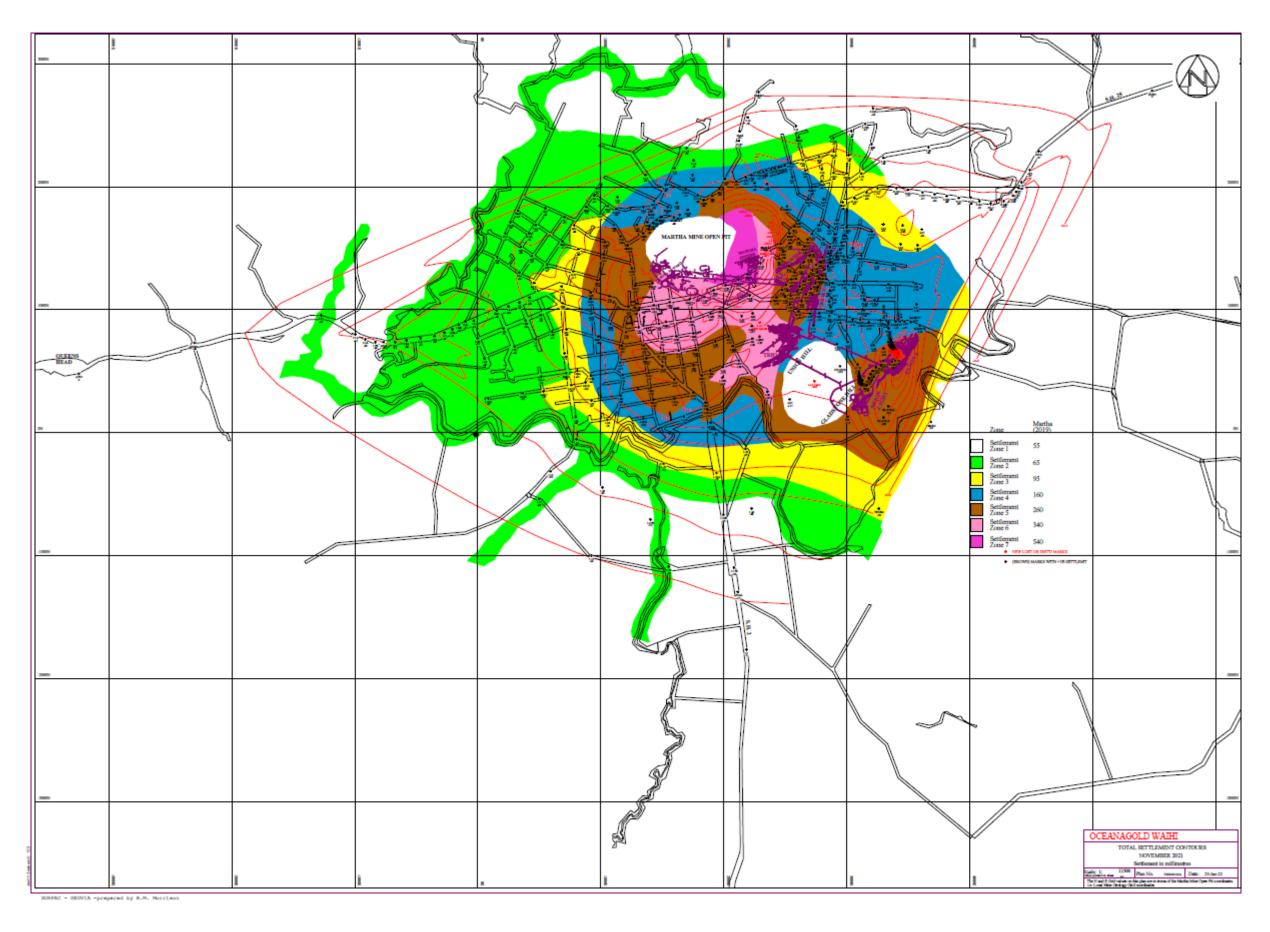
| Zone3 | 29DB  | 1/11/2021 | 2996.63 | 2106.66  | 47.7993 | -0.0796 |           |
|-------|-------|-----------|---------|----------|---------|---------|-----------|
| Zone3 | 1.21A | 1/11/2021 | 1939.94 | -325.5   | 19.651  | -0.0787 |           |
| Zone3 | 14BC  | 1/11/2021 | 535.45  | 340.672  | 20.9073 | -0.0782 |           |
| Zone3 | 2EB   | 1/11/2021 | 689.02  | 1054.62  | 29.2556 | -0.0764 |           |
| Zone3 | 1.08  | 1/11/2021 | 1052.91 | 107.171  | 16.5231 | -0.0757 |           |
| Zone3 | 31CC  | 1/11/2021 | 3248.97 | 1989.886 | 47.0278 | -0.0721 |           |
| Zone3 | 1.22  | 1/11/2021 | 1510    | -249.93  | 15.8608 | -0.072  |           |
| Zone3 | 14FB  | 1/11/2021 | 705.6   | 649.144  | 20.1475 | -0.0719 |           |
| Zone3 | 3.25  | 1/11/2021 | 3116.9  | 2107.06  | 49.8059 | -0.0712 |           |
| Zone3 | 29CE  | 1/11/2021 | 2891.84 | 2285.59  | 51.5649 | -0.0647 |           |
| Zone3 | 29AC  | 1/11/2021 | 2641.62 | 2218.071 | 48.5116 | -0.0643 |           |
| Zone3 | 3.24  | 1/11/2021 | 3017.29 | 2258.712 | 51.9261 | -0.0601 |           |
| Zone3 | 29B   | 1/11/2021 | 2772.84 | 2242.217 | 49.9973 | -0.0494 |           |
| Zone2 | 3.14  | 1/11/2021 | 1752.75 | 2214.32  | 48.748  | -0.0786 | Nr Zone 4 |
| Zone2 | 7AC   | 1/11/2021 | 994.54  | 1781.823 | 43.5159 | -0.076  | Nr Zone 3 |
| Zone2 | 1K    | 1/11/2021 | 511.74  | 957.174  | 29.5935 | -0.0755 | Nr Zone 3 |
| Zone2 | 3.03  | 1/05/2021 | 1134.46 | 1917.237 | 39.3411 | -0.0738 | Nr Zone 4 |
| Zone2 | BM4   | 1/11/2021 | 689.21  | 1555.547 | 42.2698 | -0.0709 | Nr Zone 3 |
| Zone2 | 3.12  | 1/11/2021 | 1599.68 | 2152.41  | 40.2575 | -0.0703 | Nr Zone 4 |
| Zone2 | вм7   | 1/11/2021 | 1057.32 | 1843.07  | 44.1078 | -0.0686 | Nr Zone 4 |
| Zone2 | 33F   | 1/05/2021 | 347.95  | 1511.68  | 42.0403 | -0.0682 | Nr BM4    |
| Zone2 | 4FB   | 1/11/2021 | 562.51  | 1370.97  | 39.3661 | -0.067  | Nr Zone 3 |
| Zone2 | 3.07  | 1/05/2021 | 1362.08 | 2096.818 | 48.0347 | -0.0645 |           |
| Zone2 | 6A    | 1/11/2021 | 946.43  | 1928.12  | 47.5042 | -0.0638 |           |
| Zone2 | 33A   | 1/11/2021 | 338.15  | 1303.89  | 36.715  | -0.0636 |           |
| Zone2 | 1JB   | 1/11/2021 | 604.79  | 822.76   | 26.4069 | -0.0633 |           |
| Zone2 | 1C    | 1/11/2021 | 421.48  | 1098.89  | 34.7854 | -0.0632 |           |
| Zone2 | 33E   | 1/05/2021 | 437.71  | 1437.52  | 40.9837 | -0.0626 |           |
| Zone2 | 1.04  | 1/11/2021 | 795.98  | 129.359  | 12.7985 | -0.0604 |           |
| Zone2 | 1.12  | 1/11/2021 | 800.71  | -50.23   | 10.7864 | -0.0603 |           |
| Zone2 | 11    | 1/11/2021 | 468.34  | 761.228  | 27.2705 | -0.0585 |           |
| Zone2 | 1B    | 1/11/2021 | 337.5   | 1062.935 | 33.9989 | -0.0583 |           |
| Zone2 | BM6   | 1/11/2021 | 881.86  | 1837.08  | 46.2253 | -0.0583 |           |
| Zone2 | 33DB  | 1/05/2021 | 265.4   | 1714.719 | 46.3602 | -0.0582 |           |
| Zone2 | BM14  | 1/11/2021 | 718.16  | 485.955  | 19.8296 | -0.058  |           |
|       |       |           |         |          |         |         |           |

| Zone2 | 5C    | 1/11/2021    | 705.43  | 1754.71  | 45.1623 | -0.0547 |           |
|-------|-------|--------------|---------|----------|---------|---------|-----------|
| Zone2 | 3.22A | 1/11/2021    | 2891.15 | 2398.649 | 56.6511 | -0.0536 |           |
| Zone2 | BM29  | 1/11/2021    | 2608.8  | 2400.756 | 55.9555 | -0.0529 |           |
| Zone2 | 3.15  | 1/11/2021    | 1696.24 | 2315.82  | 39.0954 | -0.0526 |           |
| Zone2 | 14AC  | 1/11/2021    | 515.17  | 457.622  | 24.0205 | -0.0526 |           |
| Zone2 | 33GA  | 1/05/2021    | 415.95  | 1621.638 | 45.3482 | -0.0523 |           |
| Zone2 | 1NB   | 1/11/2021    | -206.98 | 842.119  | 24.8019 | -0.0514 |           |
| Zone2 | 1FB   | 1/11/2021    | 210.46  | 850.779  | 29.8263 | -0.0512 |           |
| Zone2 | 1SC   | 1/11/2021    | -674.31 | 739.27   | 14.4418 | -0.051  |           |
| Zone2 | 1EB   | 1/11/2021    | 388.6   | 912.09   | 30.4289 | -0.05   |           |
| Zone2 | 1HC   | 1/11/2021    | 299.7   | 702.8    | 27.0422 | -0.0487 |           |
| Zone2 | 10    | 1/11/2021    | -271.35 | 814.183  | 22.7096 | -0.0481 |           |
| Zone2 | 1A    | 1/11/2021    | 249.92  | 1026.38  | 33.3281 | -0.0476 |           |
| Zone2 | 1LD   | 1/11/2021    | -102.13 | 906.05   | 28.3534 | -0.0466 |           |
| Zone2 | 5BC   | 1/11/2021    | 547.16  | 1824.599 | 49.1326 | -0.0462 |           |
| Zone2 | 5AC   | 1/11/2021    | 470.3   | 1688.454 | 47.0328 | -0.045  |           |
| Zone2 | 3.05  | 1/05/2021    | 966.29  | 1990.771 | 47.1876 | -0.0448 |           |
| Zone2 | 1GB   | 1/11/2021    | -2.87   | 769.742  | 29.2901 | -0.0446 |           |
| Zone2 | 33B   | 1/11/2021    | 156.88  | 1430.804 | 34.4086 | -0.0444 |           |
| Zone2 | BM5   | 1/11/2021    | 325.93  | 1806.47  | 47.8013 | -0.0441 |           |
| Zone2 | BM1   | 1/11/2021    | 152.75  | 994.869  | 32.7707 | -0.0439 |           |
| Zone2 | 1ME   | 1/11/2021    | -155.4  | 879.887  | 26.0994 | -0.0438 |           |
| Zone2 | 33C   | 1/11/2021    | 222.53  | 1621.241 | 44.4046 | -0.0435 |           |
| Zone2 | 1.03B | 1/11/2021    | 365.55  | 323.37   | 19.3818 | -0.0434 |           |
| Zone2 | 1.02D | 1/11/2021    | 85.42   | 283.3    | 18.6548 | -0.0432 |           |
| Zone2 | 1.01  | 1/11/2021    | 56.47   | 604.08   | 25.447  | -0.0399 |           |
| Zone2 | 1PA   | 1/11/2021    | -351.51 | 787.24   | 20.0612 | -0.0386 |           |
| Zone2 | 1RA   | 1/11/2021    | -579.06 | 750.356  | 16.7322 | -0.0356 |           |
| Zone2 | 1D    | 1/11/2021    | -32.05  | 911.592  | 30.0404 | -0.0324 |           |
| Zone2 | 1QC   | 1/11/2021    | -466.05 | 769.147  | 18.1476 | -0.0291 |           |
| Zone2 | 1.14  | 1/11/2021    | 496.74  | -535.095 | 8.4408  | -0.0288 |           |
| Zone2 | AP2   | 1/11/2021    | -1276.4 | 954.13   | 5.768   | -0.028  |           |
| Zone2 | 1.16  | 1/11/2021    | 1552.97 | -1086.27 | 18.3556 | -0.0224 |           |
| Zone1 | 2.    | 44 1/11/2021 | 2734.64 | 421.025  | 27.2412 | -0.5875 | dist'd    |
| Zone1 | 2.05  | 1/11/2021    | 2535.68 | 272.682  | 20.7628 | -0.1173 | Nr Zone 5 |
|       |       |              |         |          |         |         |           |

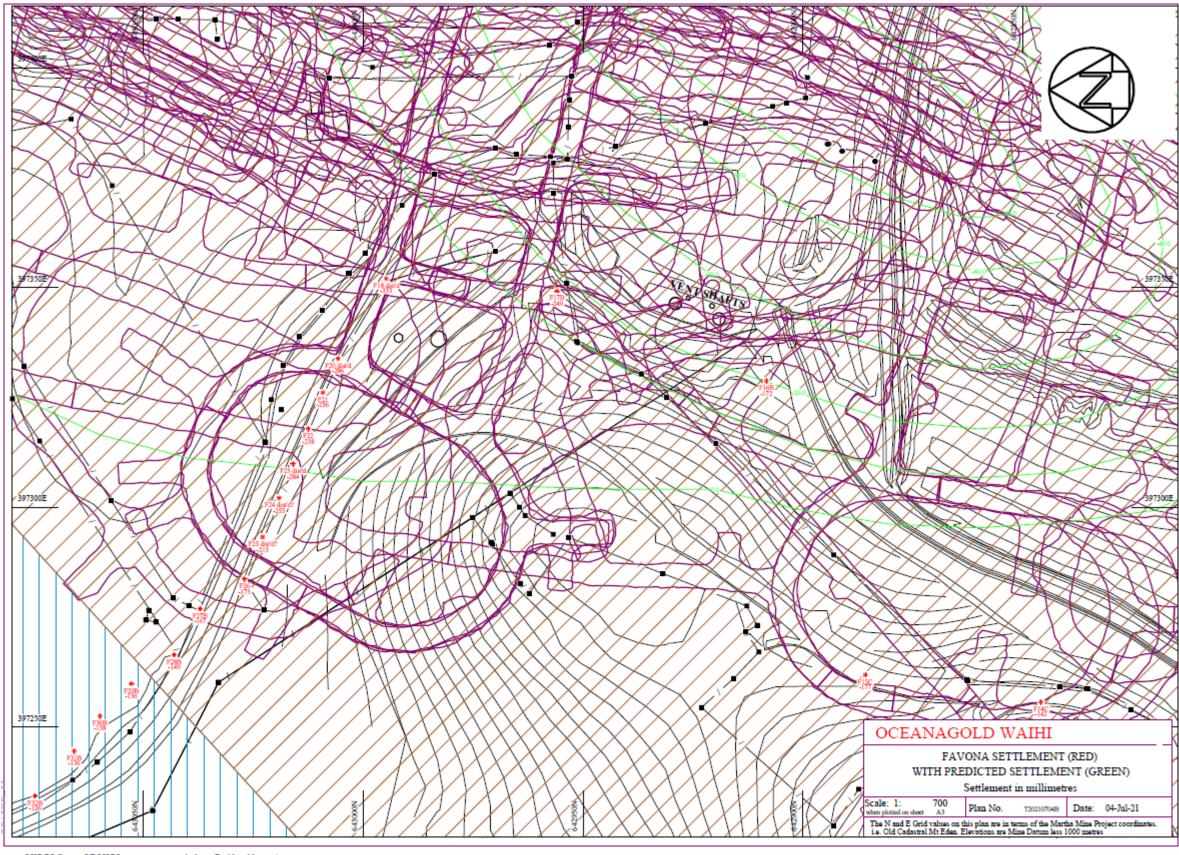
| Zone1                                                                               | 31MD                                                                                                           | 1/11/2021                                                                                                                                                                           | 4275.09                                                                                                                                                       | 1884.554                                                                                                                                       | 30.7041                                                                                                                            | -0.1059                                                                                                          | Nr river bridge |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|
| Zone1                                                                               | 31NE                                                                                                           | 1/11/2021                                                                                                                                                                           | 4349.43                                                                                                                                                       | 1927.421                                                                                                                                       | 33.3284                                                                                                                            | -0.1002                                                                                                          | Nr river bridge |
| Zone1                                                                               | 31FC                                                                                                           | 1/11/2021                                                                                                                                                                           | 3614.22                                                                                                                                                       | 1954.151                                                                                                                                       | 43.4051                                                                                                                            | -0.097                                                                                                           | Nr Zone 3       |
| Zone1                                                                               | 31LC                                                                                                           | 1/11/2021                                                                                                                                                                           | 4168.53                                                                                                                                                       | 1862.106                                                                                                                                       | 32.0717                                                                                                                            | -0.0959                                                                                                          | Nr river bridge |
| Zone1                                                                               | 2.35                                                                                                           | 1/11/2021                                                                                                                                                                           | 3609.8                                                                                                                                                        | 1652.68                                                                                                                                        | 34.0916                                                                                                                            | -0.0941                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31KC                                                                                                           | 1/11/2021                                                                                                                                                                           | 4076.39                                                                                                                                                       | 1883.2                                                                                                                                         | 34.4632                                                                                                                            | -0.0911                                                                                                          | Nr river bridge |
| Zone1                                                                               | 31JD                                                                                                           | 1/11/2021                                                                                                                                                                           | 4005.65                                                                                                                                                       | 1911.423                                                                                                                                       | 35.5328                                                                                                                            | -0.0877                                                                                                          | Nr 31KC         |
| Zone1                                                                               | 31HC                                                                                                           | 1/11/2021                                                                                                                                                                           | 3810.83                                                                                                                                                       | 1924.654                                                                                                                                       | 40.3096                                                                                                                            | -0.0859                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31DD                                                                                                           | 1/11/2021                                                                                                                                                                           | 3400.43                                                                                                                                                       | 1989.833                                                                                                                                       | 46.6743                                                                                                                            | -0.0856                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31GC                                                                                                           | 1/11/2021                                                                                                                                                                           | 3711.83                                                                                                                                                       | 1939.277                                                                                                                                       | 42.1578                                                                                                                            | -0.0855                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31IC                                                                                                           | 1/11/2021                                                                                                                                                                           | 3909.03                                                                                                                                                       | 1909.9                                                                                                                                         | 37.825                                                                                                                             | -0.0854                                                                                                          | Nr 31JD         |
| Zone1                                                                               | 28AE                                                                                                           | 1/11/2021                                                                                                                                                                           | 2128.26                                                                                                                                                       | 2448.76                                                                                                                                        | 85.8958                                                                                                                            | -0.0805                                                                                                          | Nr Zone 2       |
| Zone1                                                                               | 31ED                                                                                                           | 1/11/2021                                                                                                                                                                           | 3496.21                                                                                                                                                       | 1975.77                                                                                                                                        | 45.9011                                                                                                                            | -0.0771                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31PC                                                                                                           | 1/11/2021                                                                                                                                                                           | 4393.52                                                                                                                                                       | 1991.662                                                                                                                                       | 37.7113                                                                                                                            | -0.0714                                                                                                          | Nr river bridge |
| Zone1                                                                               | 27CD                                                                                                           | 1/11/2021                                                                                                                                                                           | 2122.89                                                                                                                                                       | 2374.362                                                                                                                                       | 85.0344                                                                                                                            | -0.0714                                                                                                          | Nr Zone 3       |
| Zone1                                                                               | 31QC                                                                                                           | 1/11/2021                                                                                                                                                                           | 4417.71                                                                                                                                                       | 2035.374                                                                                                                                       | 39.6077                                                                                                                            | -0.068                                                                                                           | Nr river bridge |
| Zone1                                                                               | 3.30                                                                                                           | 1/11/2021                                                                                                                                                                           | 3296.29                                                                                                                                                       | 2235.94                                                                                                                                        | 50.365                                                                                                                             | -0.0577                                                                                                          | Nr Zone 2       |
| Zone1                                                                               | 3.21                                                                                                           | 1/11/2021                                                                                                                                                                           | 2585.77                                                                                                                                                       | 2493.375                                                                                                                                       | 64.92                                                                                                                              | -0.0562                                                                                                          | Nr Zone 2       |
|                                                                                     |                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                |                                                                                                                                    |                                                                                                                  |                 |
| Zone1                                                                               | 3.16                                                                                                           | 1/11/2021                                                                                                                                                                           | 2195.6                                                                                                                                                        | 2563.077                                                                                                                                       | 95.5908                                                                                                                            | -0.0557                                                                                                          | Nr Zone 2       |
| Zone1                                                                               | 3.16<br>310D                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                |                                                                                                                                    |                                                                                                                  |                 |
|                                                                                     |                                                                                                                | 1/11/2021                                                                                                                                                                           | 2195.6                                                                                                                                                        | 2563.077                                                                                                                                       | 95.5908                                                                                                                            | -0.0557                                                                                                          |                 |
| Zone1                                                                               | 310D                                                                                                           | 1/11/2021                                                                                                                                                                           | 2195.6<br>4374.76                                                                                                                                             | 2563.077<br>1958.38                                                                                                                            | 95.5908<br>36.0465                                                                                                                 | -0.0557<br>-0.0522                                                                                               |                 |
| Zone1<br>Zone1                                                                      | 31OD<br>3.26B                                                                                                  | 1/11/2021<br>1/11/2021<br>1/11/2021                                                                                                                                                 | 2195.6<br>4374.76<br>3200.09                                                                                                                                  | 2563.077<br>1958.38<br>2347.92                                                                                                                 | 95.5908<br>36.0465<br>55.4033                                                                                                      | -0.0557<br>-0.0522<br>-0.0512                                                                                    |                 |
| Zone1<br>Zone1<br>Zone1                                                             | 310D<br>3.26B<br>1.20B                                                                                         | 1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021                                                                                                                                    | 2195.6<br>4374.76<br>3200.09<br>1995.49                                                                                                                       | 2563.077<br>1958.38<br>2347.92<br>-664.09                                                                                                      | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097                                                                                | -0.0557<br>-0.0522<br>-0.0512<br>-0.0489                                                                         |                 |
| Zone1<br>Zone1<br>Zone1<br>Zone1                                                    | 310D<br>3.26B<br>1.20B<br>3.23                                                                                 | 1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021                                                                                                                       | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8                                                                                                             | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65                                                                                           | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097                                                                                | -0.0557<br>-0.0522<br>-0.0512<br>-0.0489<br>-0.0479                                                              |                 |
| Zone1 Zone1 Zone1 Zone1 Zone1                                                       | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A                                                                        | 1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021                                                                                                          | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99                                                                                                  | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997                                                                               | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822                                                                      | -0.0557<br>-0.0522<br>-0.0512<br>-0.0489<br>-0.0479<br>-0.0477                                                   |                 |
| Zone1 Zone1 Zone1 Zone1 Zone1 Zone1                                                 | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24                                                                | 1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021<br>1/11/2021                                                                                             | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16                                                                                       | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23                                                                    | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861                                                           | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477                                                                 |                 |
| Zone1 Zone1 Zone1 Zone1 Zone1 Zone1 Zone1                                           | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29                                                        | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                                                                                                     | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64                                                                            | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53                                                         | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861<br>44.9042                                                | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463                                                 |                 |
| Zone1 Zone1 Zone1 Zone1 Zone1 Zone1 Zone1 Zone1                                     | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B                                               | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                                                                                           | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37                                                                 | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53<br>2510.53                                              | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861<br>44.9042<br>60.2662                                     | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454                                         |                 |
| Zone1                         | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B                                               | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                                                                                 | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62                                                      | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53<br>2510.53<br>800.624                                   | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861<br>44.9042<br>60.2662<br>6.4227                           | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454 -0.0443                                 |                 |
| Zone1                   | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B<br>1VA<br>1.23                                | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                                                             | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62<br>1013.01                                           | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53<br>2510.53<br>800.624<br>-440.769                       | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861<br>44.9042<br>60.2662<br>6.4227<br>13.2654                | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454 -0.0443 -0.0432                         |                 |
| Zone1                   | 31OD<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B<br>1VA<br>1.23<br>AP2A                        | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                                         | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62<br>1013.01<br>-766.18                                | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53<br>2510.53<br>800.624<br>-440.769<br>738.51             | 95.5908<br>36.0465<br>55.4033<br>22.0236<br>59.6097<br>53.822<br>16.6861<br>44.9042<br>60.2662<br>6.4227<br>13.2654<br>12.3104     | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454 -0.0443 -0.0432 -0.0393                 |                 |
| Zone1             | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B<br>1VA<br>1.23<br>AP2A<br>1.13                | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                               | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62<br>1013.01<br>-766.18<br>591.36                      | 2563.077<br>1958.38<br>2347.92<br>-664.09<br>2453.65<br>2635.997<br>-613.23<br>2323.53<br>2510.53<br>800.624<br>-440.769<br>738.51<br>-310.797 | 95.5908  36.0465  55.4033  22.0236  59.6097  53.822  16.6861  44.9042  60.2662  6.4227  13.2654  12.3104  7.0549                   | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454 -0.0443 -0.0432 -0.0393 -0.0376         |                 |
| Zone1       | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B<br>1VA<br>1.23<br>AP2A<br>1.13<br>AP1A        | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021                     | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62<br>1013.01<br>-766.18<br>591.36<br>4557.1            | 2563.077  1958.38  2347.92  -664.09  2453.65  2635.997  -613.23  2323.53  2510.53  800.624  -440.769  738.51  -310.797  2288.33                | 95.5908  36.0465  55.4033  22.0236  59.6097  53.822  16.6861  44.9042  60.2662  6.4227  13.2654  12.3104  7.0549  42.4626  41.3578 | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0475 -0.0463 -0.0454 -0.0443 -0.0432 -0.0376 -0.0374         |                 |
| Zone1 | 310D<br>3.26B<br>1.20B<br>3.23<br>3.28A<br>1.24<br>3.29<br>3.27B<br>1VA<br>1.23<br>AP2A<br>1.13<br>AP1A<br>AP1 | 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 1/11/2021 | 2195.6<br>4374.76<br>3200.09<br>1995.49<br>3035.8<br>3212.99<br>2225.16<br>3662.64<br>3148.37<br>-994.62<br>1013.01<br>-766.18<br>591.36<br>4557.1<br>4486.29 | 2563.077  1958.38  2347.92  -664.09  2453.65  2635.997  -613.23  2323.53  2510.53  800.624  -440.769  738.51  -310.797  2288.33  2137.008      | 95.5908  36.0465  55.4033  22.0236  59.6097  53.822  16.6861  44.9042  60.2662  6.4227  13.2654  12.3104  7.0549  42.4626  41.3578 | -0.0557  -0.0522 -0.0512 -0.0489 -0.0479 -0.0477 -0.0463 -0.0454 -0.0443 -0.0432 -0.0393 -0.0376 -0.0374 -0.0347 |                 |


| Zone1  | 1.17B   | 1/11/2021 | 2082.2   | -1093.92 | 25.5759  | -0.0277 |         |
|--------|---------|-----------|----------|----------|----------|---------|---------|
| Zone 1 | AP24A   | 1/11/2021 | 2114.57  | -1292.93 | 28.0483  | -0.0269 |         |
| Zone1  | 1TB     | 1/11/2021 | -832.77  | 738.922  | 11.229   | -0.0255 |         |
| Zone1  | 1.15    | 1/11/2021 | 923.35   | -995.413 | 14.3477  | -0.0243 |         |
| Zone1  | AP20No2 | 1/11/2021 | -2303.63 | 731.69   | 20.1848  | -0.0204 |         |
| Zone1  | BM28/2  | 1/11/2021 | 2282.46  | 2770.684 | 101.8713 | -0.0144 |         |
| Zone1  | AP19    | 1/11/2021 | -3242.58 | 480.68   | -6.5213  | 0       | control |
| Zone1  | BUH5    | 1/11/2021 | 5480.15  | 2780.649 | 52.7029  | 0       | control |
| Zone1  | C1      | 1/11/2021 | 2183.23  | -1759.33 | 32.8139  | 0       | control |
| Favona | F18     | 1/11/2021 | 3423.83  | 648.3    | 39.9761  | -0.3553 | dist'd  |
| Favona | F23     | 1/11/2021 | 3393.93  | 684.82   | 40.5921  | -0.3085 | dist'd? |
| Favona | F20     | 1/11/2021 | 3411.7   | 665.722  | 40.8972  | -0.3069 | dist'd? |
| Favona | F24     | 1/11/2021 | 3388.13  | 690.846  | 40.6082  | -0.2797 | dist'd? |
| Favona | F21     | 1/11/2021 | 3405.99  | 672      | 40.7366  | -0.2767 | Nr F20  |
| Favona | F17B    | 1/11/2021 | 3405.48  | 613.912  | 43.9634  | -0.2761 | Nr F24  |
| Favona | F22     | 1/11/2021 | 3399.79  | 678.393  | 40.6783  | -0.2581 |         |
| Favona | F25     | 1/11/2021 | 3381.55  | 697.882  | 40.5816  | -0.2399 | dist'd? |
| Favona | F15C    | 1/11/2021 | 3297.17  | 585.319  | 57.3093  | -0.2072 |         |
| Favona | F16B    | 1/11/2021 | 3367.38  | 578.696  | 46.3662  | -0.1998 |         |
| Favona | BLOCK-S | 1/11/2021 | 3295.82  | 124.324  | 24.8143  | -0.1977 |         |
| Favona | F11C    | 1/11/2021 | 3192.52  | 479.444  | 51.4141  | -0.1962 |         |
| Favona | F26     | 1/11/2021 | 3374.47  | 705.541  | 40.5698  | -0.1961 |         |
| Favona | F27B    | 1/11/2021 | 3372.41  | 717.518  | 40.4843  | -0.1889 |         |
| Favona | F10B    | 1/11/2021 | 3176.88  | 446.75   | 49.2476  | -0.1805 |         |
| Favona | BLOCK-N | 1/11/2021 | 3336.45  | 215.694  | 24.2825  | -0.1805 |         |
| Favona | F12C    | 1/11/2021 | 3207.32  | 503.82   | 53.4727  | -0.1801 |         |
| Favona | F34C    | 1/11/2021 | 3339.49  | 849.57   | 40.1605  | -0.18   |         |
| Favona | F28B    | 1/11/2021 | 3365.21  | 727.17   | 40.4883  | -0.1714 |         |
| Favona | F14C    | 1/11/2021 | 3275.29  | 551.312  | 60.637   | -0.1708 |         |
| Favona | F09A    | 1/11/2021 | 3157.2   | 388.28   | 45.1348  | -0.1702 |         |
| Favona | F13C    | 1/11/2021 | 3236.43  | 533.63   | 57.8867  | -0.1688 |         |
| Favona | F30B    | 1/11/2021 | 3359.36  | 748.26   | 40.6756  | -0.1619 |         |
| Favona | F31B    | 1/11/2021 | 3354.47  | 756.84   | 41.2202  | -0.1602 |         |
| Favona | F29B    | 1/11/2021 | 3363.2   | 738.71   | 40.4727  | -0.1593 |         |
| Favona | F33     | 1/11/2021 | 3348.56  | 812.51   | 40.6094  | -0.1543 |         |
|        |         |           |          |          |          |         |         |

| Favona | F08A    | 1/11/2021 | 3126.97 | 430.49   | 42.7235 | -0.154  |  |
|--------|---------|-----------|---------|----------|---------|---------|--|
| Favona | F32B    | 1/11/2021 | 3348.78 | 769.103  | 40.8414 | -0.1506 |  |
| Favona | F35B    | 1/11/2021 | 3336.68 | 896.06   | 39.7509 | -0.1463 |  |
| Favona | F07A    | 1/11/2021 | 3110.57 | 437.24   | 41.3387 | -0.1438 |  |
| Favona | F06     | 1/11/2021 | 3107.08 | 445.21   | 40.4796 | -0.1382 |  |
| Favona | F04     | 1/11/2021 | 3100.96 | 470.88   | 38.7004 | -0.1345 |  |
| Favona | ITXCIVB | 1/11/2021 | 2943.85 | 542.17   | 32.5898 | -0.1329 |  |
| Favona | F03     | 1/11/2021 | 3099.03 | 480.33   | 38.3753 | -0.1324 |  |
| Favona | F02     | 1/11/2021 | 3097.6  | 490      | 38.1788 | -0.1319 |  |
| Favona | F05     | 1/11/2021 | 3104.66 | 455.54   | 39.4381 | -0.131  |  |
| Favona | FP1     | 1/11/2021 | 3004.15 | 131.25   | 45.3937 | -0.1153 |  |
| Favona | TRIG 24 | 1/11/2021 | 3260.76 | -615.678 | 25.6679 | -0.0621 |  |
| Favona | TRIG 22 | 1/11/2021 | 3681.97 | 89.358   | 26.1341 | -0.0559 |  |

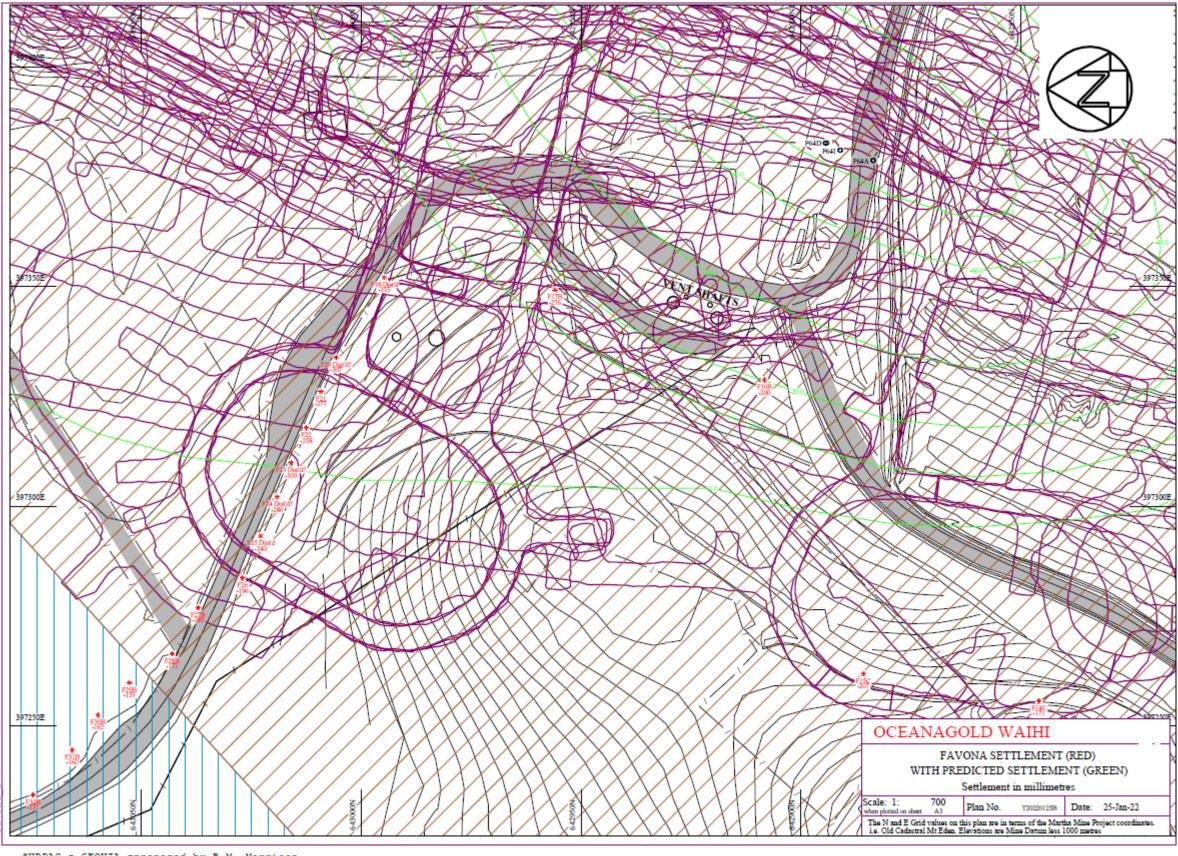



# Appendix C Plans of Settlement Marks & Contours







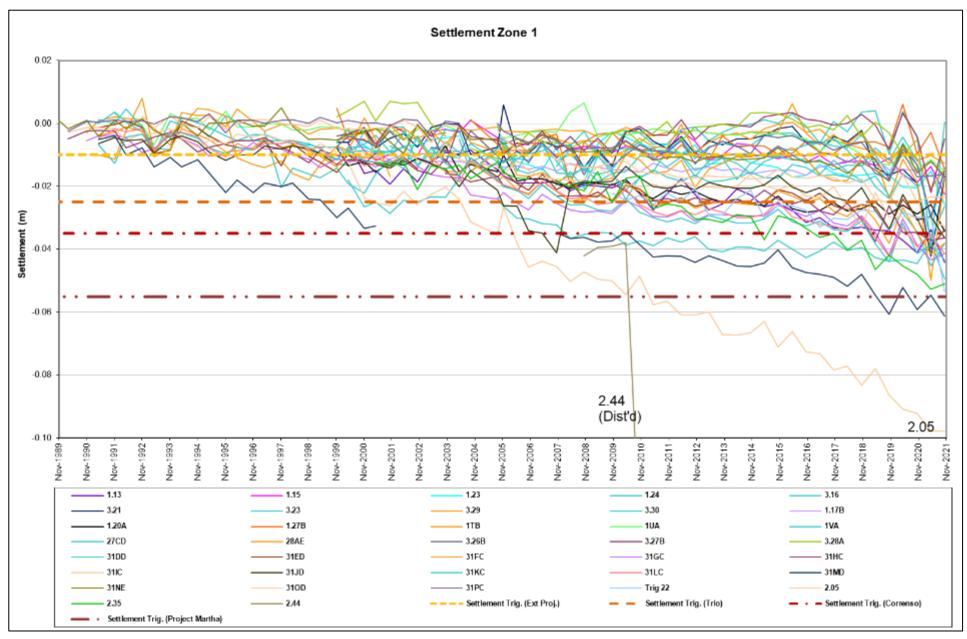





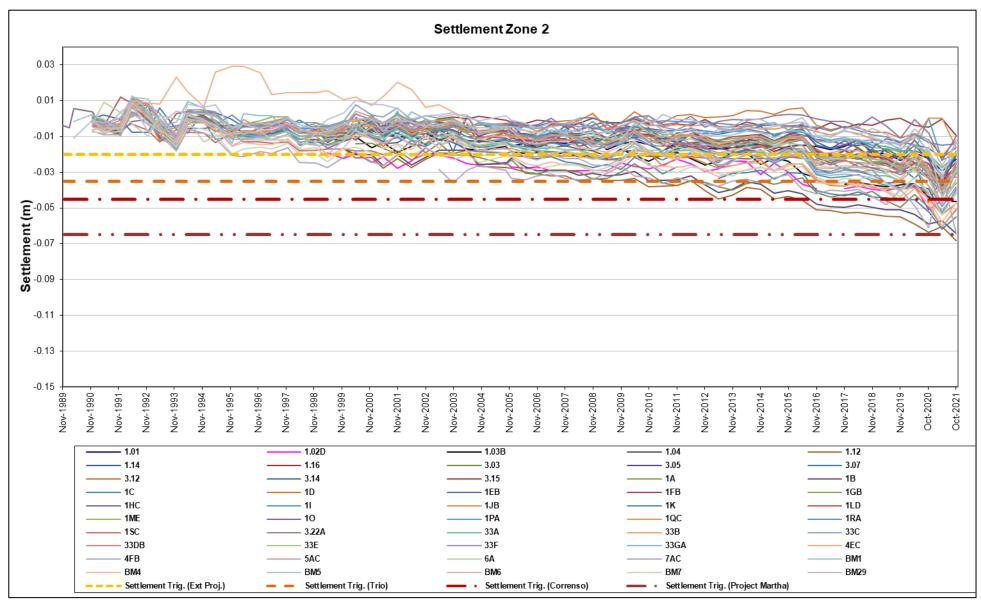



SURPAC - GEOVIA -prepared by B.M. Morrison

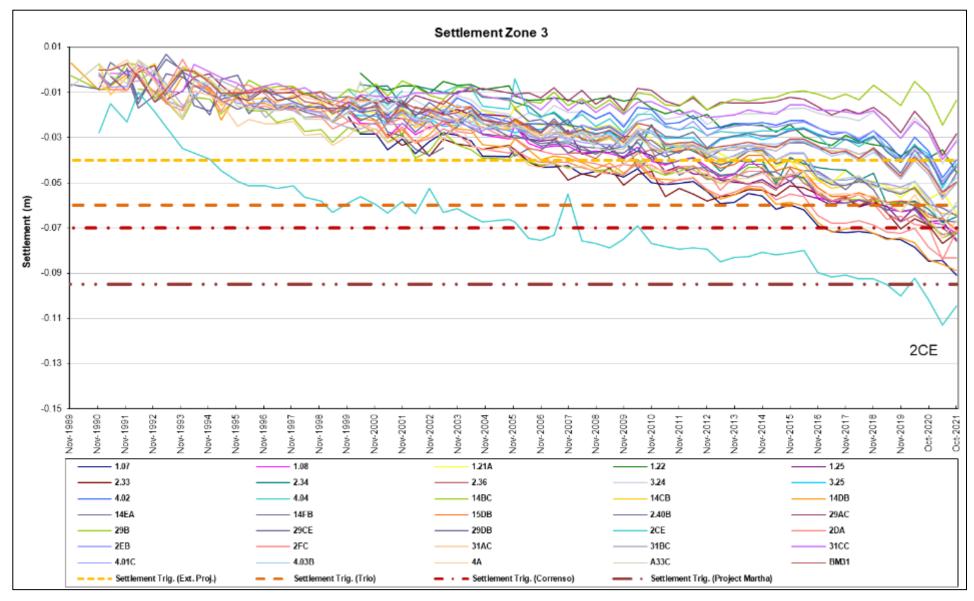




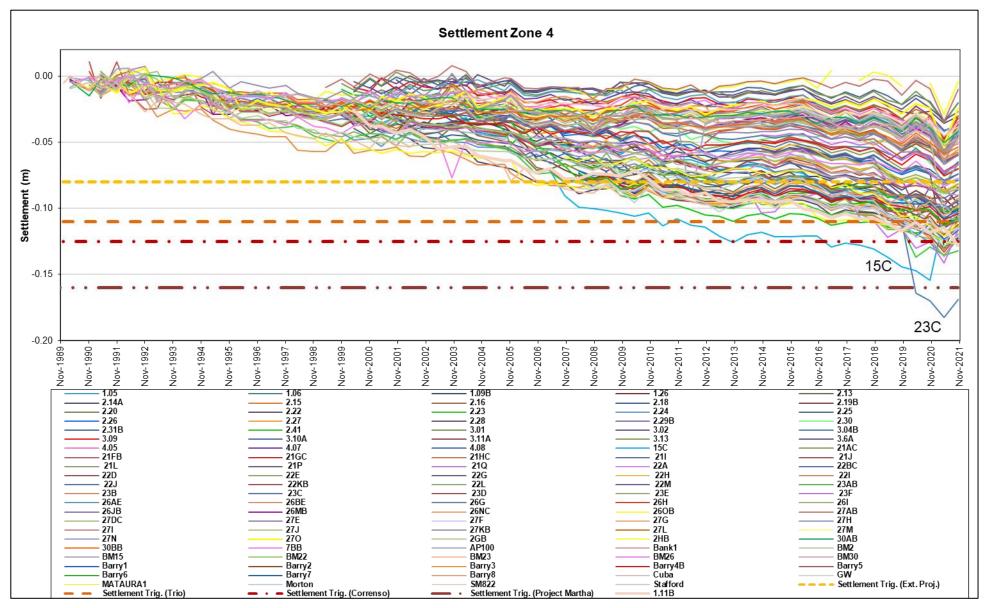

 ${\tt SURPAC}$  - GEOVIA -prepared by B.M. Morrison



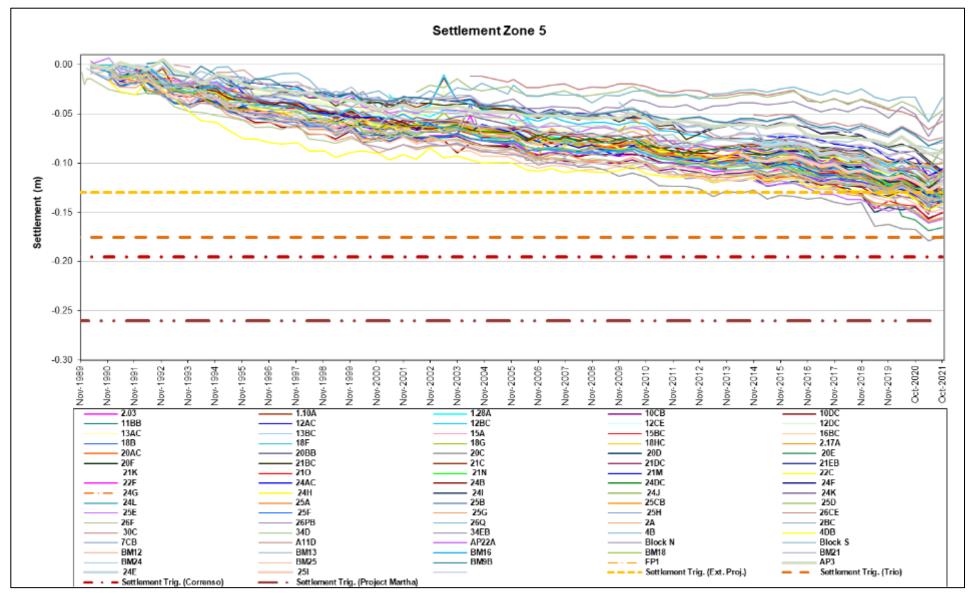

# Appendix D Trend Plots of Settlement Zones



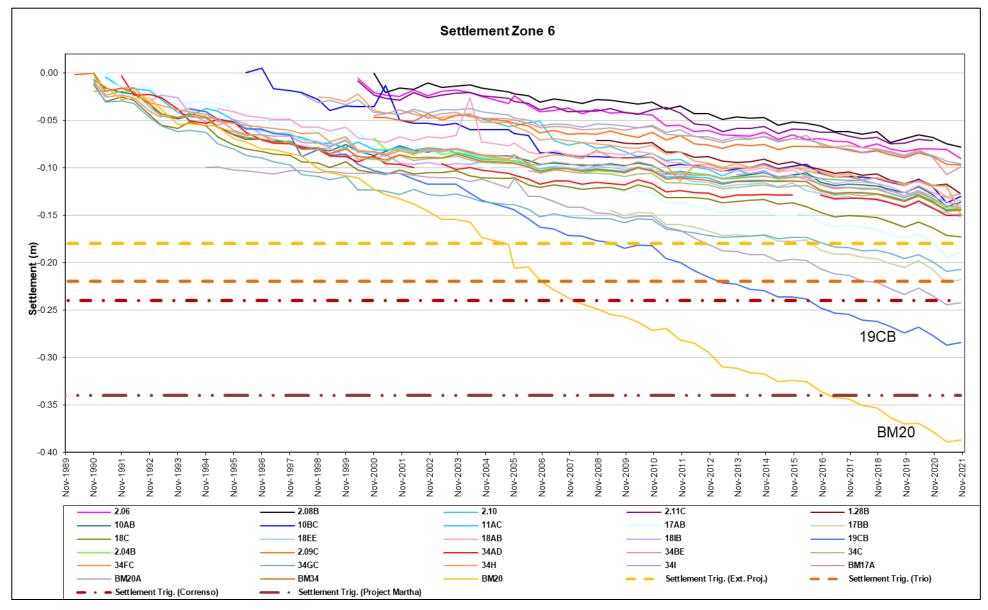


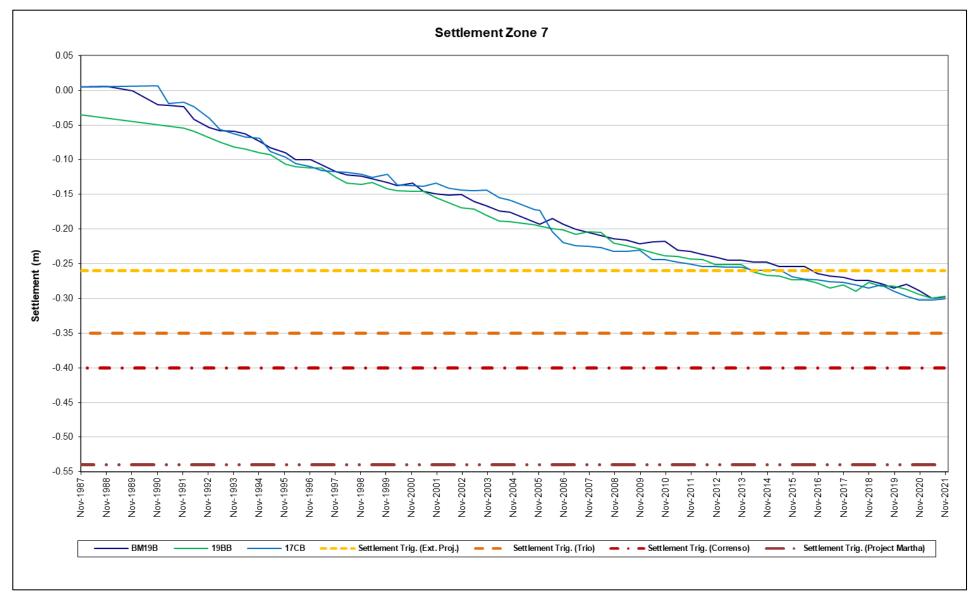


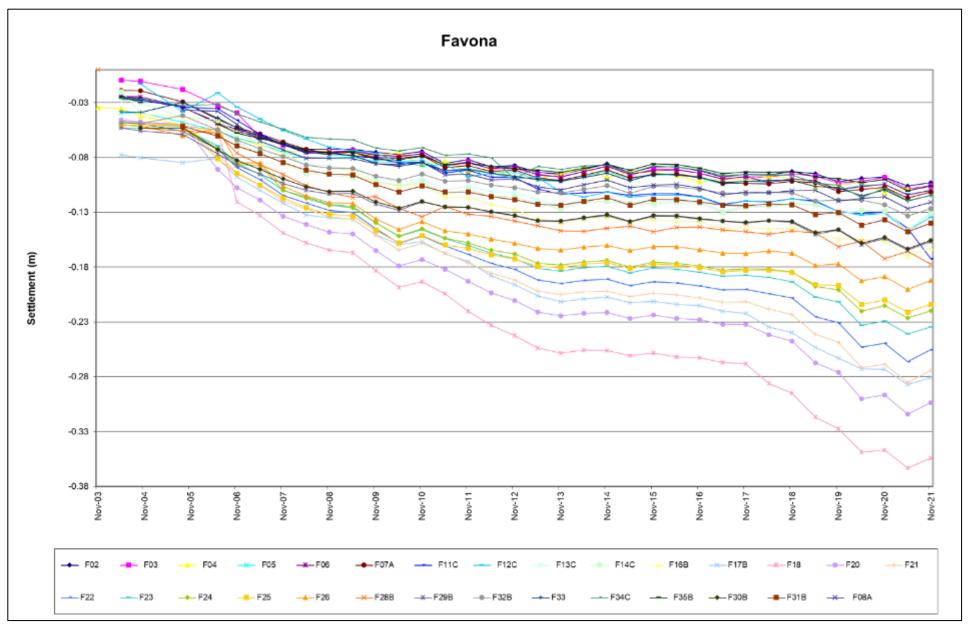



















## Appendix E Pit/Underground & Pit Wall Runoff – Water Quality 2021



## Pit / Underground Dewatering Water Quality

| Date       | Data Point             | FLS Comments                               | FLS EC (mS/m)     | FLS pH | FLS Temp | Acidity (p | Acidity (pH 3.7) | Alk-Bicarb | Alk-T | #N/A | AIS   | SbA    | SbS    | AsA AsS | Bicarb | CdA      | CdS      | CaSO  | COD CI | CrS        |
|------------|------------------------|--------------------------------------------|-------------------|--------|----------|------------|------------------|------------|-------|------|-------|--------|--------|---------|--------|----------|----------|-------|--------|------------|
| 5/01/2021  | Underground Dewatering |                                            | 293.4             | 6.11   | 27.7     |            | 1                | 85         | 85    |      | 0.014 |        | 0.0009 | 0.002   | 103    | 3        | 0.0027   | 540   | 6      | 11 0.001   |
| 9/02/2021  | Underground Dewatering |                                            |                   |        |          | 1          |                  |            |       | 119  |       |        |        |         |        |          |          | 556   | 13     | .5         |
| 4/03/2021  | Underground Dewatering |                                            |                   |        |          | 1          |                  |            |       | 102  |       |        |        |         |        |          |          | 495   | 12     | .2         |
| 22/03/2021 | 800 PC1                |                                            |                   |        |          |            | 1                | 142        | 142   |      | 0.006 |        | 0.0005 | 0.022   | 173    | 3        | 0.00121  | 550   | 6      | 12 0.001   |
| 22/03/2021 | 705 Gladstone sump     |                                            |                   |        |          |            | 1                | 870        | 870   |      | 0.116 |        | 0.0025 | 0.002   | 1060   |          | 0.0034   | 650   | 12     | 26 0.001   |
| 22/03/2021 | Favona 800 sump        |                                            |                   |        |          |            | 320              | 1          | 1     |      | 56    |        | 0.001  | 0.006   | 1      |          | 0.0088   | 510   | 32     | 18 0.0065  |
| 7/04/2021  | Underground Dewatering |                                            |                   |        |          | 1          |                  |            |       | 127  |       |        |        |         |        |          |          | 541.1 | 13     | .7         |
| 17/05/2021 | Underground Dewatering |                                            | 189.8             | 6.17   | 15.5     |            | 1                | 192        | 192   |      | 0.011 |        | 0.0026 | 0.002   | 230    | )        | 0.00181  | 490   | 6      | 12 0.001   |
|            | Underground Dewatering |                                            |                   |        |          | 1          |                  |            |       | 177  |       |        |        |         |        |          |          | 585.6 | 14     | 7          |
| 6/07/2021  | Underground Dewatering |                                            |                   |        |          |            | 1                | 120        | 120   |      | 0.043 |        | 0.0007 | 0.003   | 146    | 6        | 0.003    | 530   | 6      | 10 0.001   |
| 5/08/2021  | Underground Dewatering |                                            | 301.3             | 6.44   | 22.5     | 1          |                  |            |       | 129  |       |        |        |         |        |          |          | 561   | 13     | .7         |
| 6/09/2021  | Underground Dewatering |                                            | 299.5             | 6.45   | 24.9     | 1          |                  |            |       | 132  |       |        |        |         |        |          |          | 546   |        | 10         |
| 19/09/2021 | 800 PC1                | Sample taken but pump not running.         |                   |        |          |            | 1                | 160        | 160   |      | 0.003 |        | 0.0002 | 0.0057  | 195    |          | 5.00E-05 | 540   | 6      | 9 0.0005   |
| 19/09/2021 | 800 PC2                | Sample taken but pump not running.         |                   |        |          |            | 1                | 89         | 89    |      | 0.037 |        | 0.0004 | 0.001   | 108    | 3        | 0.0092   | 540   | 6      | 8 0.0005   |
| 19/09/2021 | 705 Gladstone sump     | Sump dry, no sample taken. Sampled from Ed | ward 800 instead. |        |          |            | 48               | 1          | 1     |      | 49    |        | 0.0004 | 0.0082  | . 1    | <u> </u> | 0.023    | 350   | 6      | 5 0.033    |
| , ,        | Favona 800 sump        | Sludgy sump, no sample taken.              |                   |        |          |            |                  |            |       |      |       |        |        |         |        |          |          |       |        |            |
| 30/09/2021 | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0022 |        | 0.024   |        | 0.006    |          | 490   |        |            |
| 5/10/2021  | 800 PC2                |                                            |                   |        |          |            | 1                | 113        | 113   |      | 0.006 |        | 0.0005 | 0.002   | 137    | '        | 0.0048   | 530   | 6      | 11 0.001   |
| 5/10/2021  | 800 PC1                |                                            |                   |        |          |            | 1                | 18.7       | 18.7  |      | 0.006 |        | 0.0004 | 0.002   | 23     | 3        | 0.0001   | 480   | 7 :    | 11 0.001   |
| 11/10/2021 | Underground Dewatering |                                            | 298               | 6.48   | 24.4     |            | 1                | 230        | 230   |      | 0.018 |        | 0.0022 | 0.0019  | 280    | )        | 0.0038   | 510   | 160    | 12 0.0005  |
|            | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0022 |        | 0.1     |        | 0.0063   |          | 530   |        |            |
| 8/11/2021  | Underground Dewatering |                                            | 307               | 6.21   | 27.1     |            | 1                | 105        | 106   |      | 0.036 |        | 0.0011 | 0.0011  | 129    | )        | 0.0032   | 530   | 6 12   | 2.3 0.0005 |
|            | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0022 |        | 0.0151  |        | 0.0026   |          | 540   |        |            |
|            | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0016 |        | 0.0109  |        | 0.0017   |          | 540   |        | 8          |
|            | Underground Dewatering |                                            | 302.2             | 6.27   | 27.3     |            | 1                | 123        | 124   |      | 0.03  |        | 0.0008 | 0.0015  | 150    | )        | 0.00195  | 560   | 6      | 13 0.0005  |
| 7/12/2021  | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0029 |        | 0.025   |        | 0.0023   |          | 560   |        | 11         |
| 21/12/2021 | Underground Dewatering |                                            |                   |        |          |            |                  |            |       |      |       | 0.0022 |        | 0.036   |        | 0.0052   |          | 520   | :      | 16         |

| Date       | Data Point             | FLS Comments                                | Cr6col | CoS    | CuA    | CuS C  | CNTOT EC | (mS/m) | NH3      | AuS    | Hard | FeA   | FeT  | PbA    | PbS     | MgSO   | MnA  | MnS  | HgA      | HgT      | NiA   | NiS    | NO3-N | NOxN |
|------------|------------------------|---------------------------------------------|--------|--------|--------|--------|----------|--------|----------|--------|------|-------|------|--------|---------|--------|------|------|----------|----------|-------|--------|-------|------|
| 5/01/2021  | Underground Dewatering |                                             | 0.01   | 0.066  |        | 0.0018 | 0.02     | 298    | 0.000118 | 0.0006 | 1990 | 2.4   | 10.1 |        | 0.0012  | 158    |      | 19.8 | 8.00E-05 | 9.00E-05 |       | 0.114  | 0.44  | 0.49 |
| 9/02/2021  | Underground Dewatering |                                             |        |        |        |        |          | 306    |          |        | 2000 | 3.1   |      |        |         | 157    | 21   |      |          |          |       |        |       |      |
| 4/03/2021  | Underground Dewatering |                                             |        |        |        |        |          | 302    |          |        | 1800 | 2.8   |      |        |         | 137    | 20   |      |          |          |       |        |       |      |
| 22/03/2021 | 800 PC1                |                                             | 0.01   | 0.031  |        | 0.001  | 0.02     | 300    | 0.00011  | 0.0006 | 1980 | 1.33  | 1.47 |        | 0.0019  | 146    |      | 17.8 | 8.00E-05 | 8.00E-05 |       | 0.046  | 0.1   | 0.1  |
| 22/03/2021 | 705 Gladstone sump     |                                             | 0.01   | 0.0057 |        | 0.0019 | 0.02     | 354    | 0.0004   | 0.0006 | 2300 | 53    | 350  |        | 0.0005  | 171    |      | 1.11 | 8.00E-05 | 0.0034   |       | 0.03   | 75    | 75   |
| 22/03/2021 | Favona 800 sump        |                                             | 0.01   | 0.43   |        | 0.074  | 0.02     | 446    | 1.00E-05 | 0.005  | 2600 | 172   | 189  |        | 0.035   | 320    |      | 25   | 8.00E-05 | 8.00E-05 |       | 0.53   | 0.1   | 0.1  |
| 7/04/2021  | Underground Dewatering |                                             |        |        |        |        |          | 310    |          |        | 2000 | 2.091 |      |        |         | 159.3  | 18.1 |      |          |          |       |        |       |      |
| 17/05/2021 | Underground Dewatering |                                             | 0.01   | 0.039  |        | 0.001  | 0.02     | 299    | 0.00035  | 0.0006 | 1800 | 0.94  | 2.3  |        | 0.0002  | 142    |      | 17.1 | 8.00E-05 | 8.00E-05 |       | 0.07   | 1.45  | 1.56 |
| 14/06/2021 | Underground Dewatering |                                             |        |        |        |        |          | 300    |          |        | 2100 | 0.073 |      |        |         | 154.69 | 17   |      |          |          |       |        |       |      |
| 6/07/2021  | Underground Dewatering |                                             | 0.01   | 0.042  |        | 0.0082 | 0.02     | 299    | 6.00E-05 | 0.0006 | 1910 | 2.3   | 4.9  |        | 0.0023  | 145    |      | 16.5 | 8.00E-05 | 8.00E-05 |       | 0.085  | 0.32  | 0.34 |
| 5/08/2021  | Underground Dewatering |                                             |        |        |        |        |          | 293    |          |        | 2000 | 5.1   |      |        |         | 150    | 24   |      |          |          |       |        |       |      |
| 6/09/2021  | Underground Dewatering |                                             |        |        |        |        |          | 270    |          |        | 2000 | 5.6   |      |        |         | 151    | 18   |      |          |          |       |        |       |      |
| 19/09/2021 | 800 PC1                | Sample taken but pump not running.          | 0.01   | 0.0041 |        | 0.0005 | 0.02     | 288    | 0.00014  | 0.0006 | 1870 | 41    | 42   |        | 0.0001  | 124    |      | 12.2 | 8.00E-05 | 8.00E-05 |       | 0.0048 | 0.1   | 0.1  |
| 19/09/2021 | 800 PC2                | Sample taken but pump not running.          | 0.01   | 0.082  |        | 0.0144 | 0.02     | 298    | 3.20E-05 | 0.0006 | 1990 | 2     | 2.1  |        | 0.0037  | 158    |      | 22   | 8.00E-05 | 8.00E-05 |       | 0.164  | 0.15  | 0.16 |
| 19/09/2021 | 705 Gladstone sump     | Sump dry, no sample taken. Sampled from Edv | 0.01   | 0.47   |        | 0.67   | 0.02     | 270    | 1.00E-05 | 0.0006 | 1420 | 14.6  | 14.1 |        | 0.165   | 130    |      | 33   | 8.00E-05 | 8.00E-05 |       | 0.99   | 8.4   | 8.5  |
| 19/09/2021 | Favona 800 sump        | Sludgy sump, no sample taken.               |        |        |        |        |          |        |          |        |      |       |      |        |         |        |      |      |          |          |       |        |       |      |
| 30/09/2021 | Underground Dewatering |                                             | 0.01   |        | 0.049  |        |          | 289    | 0.00079  |        | 1780 | 5.1   |      | 0.096  |         | 136    | 16.7 |      | 8.00E-05 |          | 0.112 |        |       |      |
| 5/10/2021  | 800 PC2                |                                             | 0.01   | 0.058  |        | 0.001  | 0.02     | 307    | 0.000107 | 0.0006 | 1950 | 7.4   | 8.4  |        | 0.0002  | 151    |      | 18   | 8.00E-05 | 8.00E-05 |       | 0.1    | 0.1   | 0.1  |
| 5/10/2021  | 800 PC1                |                                             | 0.01   | 0.0067 |        | 0.001  | 0.02     | 296    | 1.00E-05 | 0.0006 | 1830 | 79    | 82   |        | 0.0002  | 155    |      | 14.3 | 8.00E-05 | 8.00E-05 |       | 0.0098 | 0.1   | 0.1  |
| 11/10/2021 | Underground Dewatering |                                             | 0.01   | 0.049  |        | 0.0026 | 0.02     | 299    | 0.00088  | 0.0006 | 1810 | 16.6  | 133  |        | 0.00028 | 131    |      | 15.8 | 8.00E-05 | 0.00076  |       | 0.096  | 1.41  | 1.57 |
|            | Underground Dewatering |                                             | 0.01   |        | 0.038  |        |          | 276    | 0.0003   |        | 1790 | 12.2  |      | 0.164  |         | 115    | 13   |      | 8.00E-05 |          | 0.059 |        |       |      |
|            | Underground Dewatering |                                             | 0.01   | 0.048  |        | 0.0098 | 0.02     | 286    | 0.000171 | 0.0006 | 1910 | 1.74  | 4.8  |        | 0.00108 | 140    |      | 16.5 | 8.00E-05 | 8.00E-05 |       | 0.093  | 1.02  | 1.15 |
| 10/11/2021 | Underground Dewatering |                                             | 0.01   |        | 0.022  |        |          | 292    | 0.00072  |        | 1900 | 3.3   |      | 0.04   |         | 131    | 14.6 |      | 8.00E-05 |          | 0.079 |        |       |      |
| 23/11/2021 | Underground Dewatering |                                             | 0.01   |        | 0.0184 |        |          | 280    | 6.40E-05 |        | 1950 | 2.7   |      | 0.0179 |         | 145    | 14.7 |      | 8.00E-05 |          | 0.052 |        |       |      |
|            | Underground Dewatering |                                             | 0.01   | 0.029  |        | 0.0019 | 0.02     | 277    | 0.00028  | 0.0006 |      | 2.2   | 3.5  |        | 0.0004  | 128    |      |      | 8.00E-05 |          |       | 0.055  | 0.46  | 0.53 |
| 7/12/2021  | Underground Dewatering |                                             | 0.01   |        | 0.041  |        |          | 281    | 0.0037   |        | 1990 | 8.5   |      | 0.094  |         | 142    | 13.2 |      | 8.00E-05 |          | 0.099 |        | _     | ]    |
| 21/12/2021 | Underground Dewatering |                                             | 0.01   |        | 0.06   |        |          | 290    | 0.00088  |        | 1870 | 13.1  |      | 0.083  |         | 137    | 16.7 |      | 8.00E-05 |          | 0.128 |        |       |      |

| Date       | Data Point             | FLS Comments                               | NO2-N | NH4N  | рН  | РТО   | KSO  | DRP   | SeA    | SeS    | SeT    | SI   | AgA    | AgS    | NaSO | NaT SO4 | Sum Anion | Sum Cation | TKN  | SeTR   | TSS   | CNWAD Zr | nA Zn | nS    |
|------------|------------------------|--------------------------------------------|-------|-------|-----|-------|------|-------|--------|--------|--------|------|--------|--------|------|---------|-----------|------------|------|--------|-------|----------|-------|-------|
| 5/01/2021  | Underground Dewatering |                                            | 0.1   | 0.25  | 6.3 | 0.072 | 10.5 | 0.005 |        | 0.002  | 0.0021 | 35   |        | 0.0002 | 44   | 2000    | 44        | 43         | 0.28 |        | 330   | 0.02     |       | 1.64  |
| 9/02/2021  | Underground Dewatering |                                            |       |       | 6.7 |       | 11   |       |        | 0.0094 |        |      |        |        | 44   | 2100    |           |            |      | 0.0094 | 340   |          |       |       |
| 4/03/2021  | Underground Dewatering |                                            |       |       | 6.5 |       | 9.6  |       |        | 0.0094 |        |      |        |        | 39   | 1950    |           |            |      | 0.0094 | 140   |          |       |       |
| 22/03/2021 | 800 PC1                |                                            | 0.1   | 0.03  | 7.2 | 0.004 | 10.4 | 0.004 |        | 0.002  | 0.0021 | 37   |        | 0.0002 | 48   | 1790    | 40        | 43         | 0.14 |        | 9     | 0.02     |       | 1.1   |
| 22/03/2021 | 705 Gladstone sump     |                                            | 0.1   | 0.1   | 7.2 | 8.3   | 18.8 | 0.004 |        | 0.003  | 0.0121 | 11.2 |        | 0.0002 | 74   | 2000    | 65        | 50         | 0.74 |        | 28000 | 0.02     |       | 0.45  |
| 22/03/2021 | Favona 800 sump        |                                            | 0.1   | 0.59  | 3.1 | 0.061 | 16   | 0.009 |        | 0.005  | 0.0025 | 122  |        | 0.0002 | 76   | 3500    | 73        | 64         | 1.09 |        | 123   | 0.02     |       | 10.5  |
| 7/04/2021  | Underground Dewatering |                                            |       |       | 6.6 |       | 11.1 |       |        | 0.0094 |        |      |        |        | 46.9 | 2100    |           |            |      | 0.0094 | 87    |          |       |       |
| 17/05/2021 | Underground Dewatering |                                            | 0.1   | 0.44  | 6.5 | 0.85  | 12.3 | 0.004 |        | 0.002  | 0.0021 | 37   |        | 0.0002 | 47   | 1920    | 44        | 39         | 0.78 |        | 1920  | 0.02     |       | 1.02  |
| 14/06/2021 | Underground Dewatering |                                            |       |       | 6.7 |       | 12   |       |        | 0.0094 |        |      |        |        | 51   | 2000    |           |            |      | 0.0094 | 1600  |          |       |       |
| 6/07/2021  | Underground Dewatering |                                            | 0.1   | 0.083 | 6.5 | 0.039 | 10.9 | 0.004 |        | 0.002  | 0.0011 | 37   |        | 0.0002 | 46   | 2100    |           | 41         | 0.16 |        | 127   | 0.02     |       | 1.49  |
| 5/08/2021  | Underground Dewatering |                                            |       |       | 6.6 |       | 11   |       |        | 0.0094 |        |      |        |        | 50   | 1960    |           |            |      |        | 510   |          |       |       |
| 6/09/2021  | Underground Dewatering |                                            |       |       | 6.6 |       | 10   |       |        | 0.0094 |        |      |        |        | 48   | 1740    |           |            |      | 0.0094 | 1200  |          |       |       |
| 19/09/2021 | 800 PC1                | Sample taken but pump not running.         | 0.1   | 0.1   | 6.8 | 0.01  | 9.8  | 0.004 |        | 0.001  | 0.0011 | 22   |        | 0.0001 | 51   | 1810    | 41        | 40         | 0.1  |        | 70    | 0.02     |       | 0.078 |
| 19/09/2021 | 800 PC2                | Sample taken but pump not running.         | 0.1   | 0.062 | 6.4 | 0.00  | 10.8 | 0.04  |        | 0.001  | 0.0011 | 41   |        | 0.0001 | 45   | 2000    |           |            |      |        | 12    | 0.02     |       | 3.6   |
| 19/09/2021 | 705 Gladstone sump     | Sump dry, no sample taken. Sampled from Ed | 0.1   | 1.03  | 3.4 | 0.005 | 5.4  | 0.004 |        | 0.003  | 0.0032 | 54   |        | 0.0001 | 11.8 | 1850    | 39        | 37         | 1.01 |        | 13    | 0.02     |       | 11.1  |
| 19/09/2021 | Favona 800 sump        | Sludgy sump, no sample taken.              |       |       |     |       |      |       |        |        |        |      |        |        |      |         |           |            |      |        |       |          |       |       |
| 30/09/2021 | Underground Dewatering |                                            |       | 0.71  | 6.7 | 0.32  |      | 0.004 | 0.0009 |        |        |      | 0.0001 |        |      | 1830    |           |            |      |        | 940   |          | 2.5   |       |
| 5/10/2021  | 800 PC2                |                                            | 0.1   | 0.069 | 6.8 | 0.002 | 11.7 | 0.004 |        | 0.002  | 0.0011 | 37   |        | 0.0002 | 51   | 1950    | 43        | 42         | 0.1  |        | 15    | 0.02     |       | 3.5   |
| 5/10/2021  | 800 PC1                |                                            | 0.1   | 0.02  | 6.1 | 0.007 | 11.4 | 0.004 |        | 0.002  | 0.0011 | 13.3 |        | 0.0002 | 48   | 1960    | 41        | 39         | 0.1  |        | 160   | 0.02     | (     | 0.156 |
| 11/10/2021 | Underground Dewatering |                                            | 0.16  | 0.27  | 7.2 | 2.1   | 11.3 | 0.004 |        | 0.001  | 0.0044 | 38   |        | 0.0001 | 45   | 1850    | 44        | 39         | 0.38 |        | 4400  | 0.02     |       | 1.5   |
| 27/10/2021 | Underground Dewatering |                                            |       | 0.21  | 6.8 | 0.82  |      | 0.004 | 0.0005 |        |        |      | 0.0001 |        |      | 1740    |           |            |      |        | 450   |          | 1.93  |       |
| 8/11/2021  | Underground Dewatering |                                            | 0.13  | 0.25  | 6.5 | 0.061 | 10.9 | 0.004 |        | 0.001  | 0.0011 | 37   |        | 0.0001 | 50   | 1860    | 41        | 41         | 0.43 |        | 220   | 0.02     |       | 1.44  |
| 10/11/2021 | Underground Dewatering |                                            |       | 0.7   | 6.7 | 0.185 |      | 0.004 | 0.0009 |        |        |      | 0.0001 |        |      | 46 1850 |           |            |      |        | 670   | 0.02     | 1.34  |       |
| 23/11/2021 | Underground Dewatering |                                            |       | 0.085 | 6.5 | 0.21  |      | 0.004 | 0.0005 |        |        |      | 0.0001 |        |      | 45 2000 |           |            |      |        | 630   |          | 0.93  |       |
| 6/12/2021  | Underground Dewatering |                                            | 0.1   | 0.148 | 6.9 | 0.028 | 10.9 | 0.004 |        | 0.001  | 0.0021 | 37   |        | 0.0001 | . 42 | 2000    | 44        | 41         | 0.19 |        | 99    | 0.02     |       | 1.03  |
| 7/12/2021  | Underground Dewatering |                                            |       | 1.91  | 6.9 | 0.41  |      | 0.004 | 0.0017 |        |        |      | 0.0001 |        |      | 47 1880 |           |            |      |        | 1020  | 0.02     | 1.31  |       |
| 21/12/2021 | Underground Dewatering |                                            |       | 0.45  | 6.9 | 0.44  |      | 0.004 | 0.0012 |        |        |      | 0.0001 |        |      | 48 1860 |           |            |      |        | 840   | 0.02     | 2.3   |       |



### **Treated Water Quality**

| Date       | Data Point                     | FLS Comments                           | FLS EC (mS/m) | FLS pH | FLS Temp | Alk-Bicarb Al | k-T SbA : | SbS    | AsA   | AsS   | Bicarb | CdA      | CdS    | CaSO   Carl | Cl          | Cr6col CoS | CuA    | CuS     | CNTOT | DIN EC ( | mS/m) | NH3 Hard    |
|------------|--------------------------------|----------------------------------------|---------------|--------|----------|---------------|-----------|--------|-------|-------|--------|----------|--------|-------------|-------------|------------|--------|---------|-------|----------|-------|-------------|
| 4/01/2021  | 10:30 Treated Water Discharge  |                                        | 276.8         | 8.84   | 26.5     |               | 0.0013    |        | 0.002 |       |        | 0.0001   |        | 640         |             | 0.01       | 0.00   | 1       |       | 9.4      | 279   | 0.136 1830  |
| 11/01/202  | 1 9:30 Treated Water Discharge |                                        | 281.9         | 8.84   | 25.8     |               | 0.001     | 0.001  |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 18/01/2021 | 10:30 Treated Water Discharge  |                                        | 286.4         | 8.9    | 26       |               | 0.001     | 0.001  |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 24/01/2021 | 10:00 Treated Water Discharge  |                                        | 293.1         | 8.96   | 24.2     |               | 0.0006    | 0.0006 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 1 9:30 Treated Water Discharge |                                        | 259           | 8.56   | 22.5     | 28            | 31 0.0008 | 0.001  | 0.002 | 0.002 | 34     | 0.0001   | 0.0001 | 560 1       | .2 32       | 0.01 0.001 | 3 0.00 | 1 0.001 | 0.002 | 3.5      | 293   | 0.22 1760   |
|            | 1 9:30 Treated Water Discharge |                                        | 297.8         | 8.97   | 25.6     |               | 0.0006    | 0.0007 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 19:15 Treated Water Discharge  |                                        | 101.2         | 8.67   | 22.6     |               | 0.0007    | 0.0008 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 21/02/2021 | 13:00 Treated Water Discharge  |                                        | 248.8         | 9.01   | 25.9     |               | 0.0005    | 0.0006 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 1/03/202:  | 1 9:30 Treated Water Discharge |                                        | 202           | 8.15   | 22.7     |               | 0.0037    |        | 0.002 |       |        | 0.0001   |        | 520         |             | 0.01       | 0.001  | 8       |       | 7.5      | 275   | 0.05 1580   |
| 7/03/2021  | 12:30 Treated Water Discharge  |                                        | 296           | 8.89   | 23.2     |               | 0.0062    | 0.0056 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 15/03/2021 | 11:30 Treated Water Discharge  |                                        | 311.7         | 8.99   | 25.9     |               | 0.0012    | 0.0013 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 22/03/2021 | 14:30 Treated Water Discharge  |                                        | 178.1         | 8.9    | 24.9     |               | 0.0029    | 0.0031 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 28/03/2021 | 12:00 Treated Water Discharge  |                                        | 266.2         | 8.77   | 21.8     |               | 0.0084    | 0.0088 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 6/04/2021  | 11:00 Treated Water Discharge  |                                        | 270           | 8.91   | 23.6     |               | 0.0019    |        | 0.001 |       |        | 5.00E-05 |        | 560         |             | 0.01       | 0.000  | 5       |       |          | 290   | 0.061 1780  |
|            | 1 9:30 Treated Water Discharge |                                        | 296.2         | 8.7    | 23.9     |               | 0.0091    | 0.0095 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 18/04/2021 | 11:00 Treated Water Discharge  |                                        | 269.6         | 8.94   | 23.9     |               | 0.0029    | 0.0031 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 1 9:30 Treated Water Discharge |                                        | 265.7         | 7.93   | 18.7     |               | 0.0119    | 0.0127 |       |       |        |          |        |             | $\neg \neg$ |            |        |         |       |          |       |             |
|            | 14:00 Treated Water Discharge  |                                        | 186.4         | 8.5    | 22       |               | 0.0038    |        | 0.002 |       |        | 0.0001   |        | 600         |             | 0.01       | 0.001  | 3       |       |          | 287   | 0.23 1870   |
|            | 13:30 Treated Water Discharge  | Daily field reading for mill           | 268.5         | 8.5    | 23.6     |               | 0.0011    |        | 0.002 |       |        | 0.0001   |        | 570         |             | 0.01       | 0.00   | 1       |       |          | 291   | 0.09 1800   |
| 7/05/202:  | 1 1:40 Treated Water Discharge |                                        |               |        |          |               | 0.0009    |        | 0.002 |       |        | 0.0001   |        | 610         |             | 0.01       | 0.00   | 1       |       |          | 291   | 0.084 1930  |
| 10/05/2023 | 1 0:00 Treated Water Discharge |                                        | 267.2         | 8.72   | 22       |               | 0.0009    | 0.0009 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 17/05/202  | 1 9:30 Treated Water Discharge |                                        | 159.2         | 8.7    | 17.5     |               | 0.003     | 0.0031 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 25/05/2021 | 12:00 Treated Water Discharge  |                                        | 270           | 8.8    | 20.2     |               | 0.0024    | 0.0024 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 1/06/2021  | 13:30 Treated Water Discharge  |                                        | 237           | 8.75   | 19.2     |               | 0.0007    |        | 0.002 |       |        | 0.0001   |        | 490         |             | 0.01       | 0.00   | 1       |       |          | 247   | 0.061 1550  |
|            | 12:30 Treated Water Discharge  |                                        | 243.2         | 8.97   | 19.7     |               | 0.0022    | 0.0023 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 12:47 Treated Water Discharge  |                                        | 249.9         | 9.14   | 21.2     |               | 0.003     | 0.0034 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 19:53 Treated Water Discharge  |                                        |               |        |          |               | 0.0009    | 0.0008 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 10:00 Treated Water Discharge  |                                        | 84            | 8.21   | 17.6     |               | 0.0032    | 0.0032 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 1 0:00 Treated Water Discharge |                                        | 100           | 9      | 18.7     |               | 0.0059    |        | 0.001 |       |        | 5.00E-05 |        | 470         |             | 0.01       | 0.002  | 5       |       |          | 249   | 0.105 1450  |
| 12/07/2021 | 13:00 Treated Water Discharge  |                                        | 288           | 9      | 19.8     |               | 0.0026    | 0.0027 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 20/07/2021 | 12:30 Treated Water Discharge  |                                        | 266.2         | 8.8    | 20.7     |               | 0.0009    | 0.0008 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 15:00 Treated Water Discharge  |                                        | 185.5         | 8.35   | 16       |               | 0.0006    | 0.0006 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 13:10 Treated Water Discharge  |                                        | 254.1         | 8.7    | 18.7     |               | 0.0051    |        | 0.001 |       |        | 5.00E-05 |        | 480         |             | 0.01       | 0.003  | 8       |       |          | 237   | 0.0144 1470 |
|            | 12:25 Treated Water Discharge  |                                        | 239.6         | 8.99   | 17.2     |               | 0.0069    | 0.0078 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 13:30 Treated Water Discharge  |                                        |               |        |          |               | 0.01      | 0.0101 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 9/09/202   | 1 0:00 Treated Water Discharge | No water discharging, no sample taken  |               |        |          |               |           |        |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 13/09/2021 | 12:55 Treated Water Discharge  |                                        | 272.9         | 8.88   | 19.4     |               | 0.0063    |        | 0.001 |       |        | 5.00E-05 |        | 490         |             | 0.01       | 0.003  | 7       |       |          | 252   | 0.146 1580  |
|            | 1 9:50 Treated Water Discharge |                                        | 206.2         | 8.81   | 18.2     |               | 0.0059    | 0.0064 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 28/09/2021 | 16:30 Treated Water Discharge  |                                        | 255.3         | 9.01   | 20.5     |               | 0.008     | 0.0082 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 5/10/2021  | 11:02 Treated Water Discharge  |                                        | 253.8         | 8.8    | 21.7     |               | 0.0058    |        | 0.001 |       |        | 5.00E-05 |        | 500         |             | 0.01       | 0.004  | 6       |       |          | 247   | 0.2 1470    |
|            | 13:22 Treated Water Discharge  |                                        | 247.4         | 8.89   | 21.1     |               | 0.0073    | 0.0072 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 11:20 Treated Water Discharge  | Compared pH with real time probe = 8.8 | 234.4         | 9.76   | 22       |               | 0.0078    | 0.0077 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
| 26/10/2021 | 15:21 Treated Water Discharge  |                                        | 249           |        | 23.1     |               | 0.0018    |        | 0.001 |       |        | 5.00E-05 |        | 510         |             | 0.01       | 0.001  | 2       |       |          | 243   | 0.083 1550  |
|            | 13:30 Treated Water Discharge  |                                        | 272.7         |        | 24.3     |               | 0.001     |        | 0.001 |       |        | 5.00E-05 |        | 580         | $\top$      | 0.01       | 0.000  |         |       |          | 258   |             |
|            | 11:40 Treated Water Discharge  |                                        | 262           |        | 24.1     |               | 0.0126    | 0.0122 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 12:30 Treated Water Discharge  |                                        | 265.4         |        | 24.8     |               | 0.0086    | 0.0085 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 16:20 Treated Water Discharge  |                                        | 277.4         |        | 25.9     |               | 0.0085    | 0.0089 |       |       |        |          |        |             |             |            | 1      |         |       |          |       |             |
|            | 11:20 Treated Water Discharge  |                                        | 277.1         |        | 24       |               | 0.0132    | 0.0136 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 14:25 Treated Water Discharge  |                                        | 282.7         |        | 25.1     |               | 0.0131    |        | 0.001 |       |        | 5.00E-05 |        | 600         |             | 0.01       | 0.004  | 5       |       |          | 264   | 0.23 1760   |
|            | 11:50 Treated Water Discharge  |                                        | 285.7         |        | 25.3     |               | 0.013     | 0.0132 |       |       |        |          |        |             |             |            |        |         |       |          |       |             |
|            | 15:20 Treated Water Discharge  |                                        | 269.9         |        | 25.7     |               | 0.0104    | 0.0108 |       |       |        |          |        |             | +           |            | 1      | 1       |       |          |       |             |
|            | 11:50 Treated Water Discharge  |                                        | 293.5         |        | 26.3     |               | 0.014     | 0.014  |       |       |        |          |        |             | $\top$      |            |        |         |       |          |       |             |
| -, -,      |                                | 1                                      |               | 2.00   |          |               | 0.00      |        |       |       |        |          |        |             |             |            | _1     |         | i     |          |       |             |

| Date             | Data Point              | FeA    | FeS  | PbA    | PbS    | MgSO | MnA    | MnS    | HgA      | HgS      | NiA    | NiS   | NO3-N | NOxN | NO2-N | NH4N | рН Р | то    | KSO  | DRP   | SeA    | SeS SI     | AgA     | AgS    | NaSO | SO4  | Sum Anion | Sum Cation | TKN  | TSS |
|------------------|-------------------------|--------|------|--------|--------|------|--------|--------|----------|----------|--------|-------|-------|------|-------|------|------|-------|------|-------|--------|------------|---------|--------|------|------|-----------|------------|------|-----|
| 4/01/2021 10:30  | Treated Water Discharge | 0.04   | _    | 0.0002 |        | 56   |        |        | 8.00E-05 |          | 0.001  |       |       | 8.2  |       | _    | -    | 0.002 |      | 0.004 | 0.0005 |            | 0.0002  |        |      | 1810 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.4  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.9  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
| <u> </u>         | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.9  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.04   | 0.04 | 0.0002 | 0.0002 | 85   | 0.0122 | 0.0088 | 8.00F-05 | 8.00E-05 | 0.001  | 0.001 | 2     | 2.1  | 0.1   | 1.46 |      | 0.002 | 10.9 | 0.004 | 0.0004 | 0.0004 7.1 | 0.0002  | 0.0002 | 41   | 2000 | 43        | 37         | 1.55 | 3   |
|                  | Treated Water Discharge |        |      | 0.000  |        |      |        |        |          | 0.002    |        |       | _     |      |       |      | 8.9  |       |      |       | 0.002  | 0.002      |         |        |      |      | -         |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.7  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.04   | ı    | 0.0002 |        | 67   | 0.0158 |        | 8.00E-05 |          | 0.001  |       |       | 6.8  |       | 0.75 | -    | 0.004 |      | 0.004 | 0.0023 | 0.002      | 0.0002  |        |      | 1730 |           |            |      | 3   |
|                  | Treated Water Discharge | 0.0-   |      | 0.0002 |        | 07   | 0.0130 |        | 0.002 03 |          | 0.001  |       |       | 0.0  |       | 0.73 | 8.7  | 0.004 |      | 0.004 | 0.0023 | 0.004      | 0.0002  |        |      | 1730 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.8  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.2  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 2   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 2   |
|                  | Treated Water Discharge | 0.02   | ,    | 0.0001 |        | 91   | 0.0149 |        | 8.00E-05 |          | 0.0007 |       |       |      |       | 0.95 | -    | 0.002 |      | 0.004 | 0.003  | 0.003      | 0.0001  |        |      | 1950 |           |            |      | 2   |
|                  | Treated Water Discharge | 0.02   | -    | 0.0001 |        | 91   | 0.0143 |        | 8.00L-03 |          | 0.0007 |       |       |      |       | 0.55 | 8.6  | 0.002 |      | 0.004 | 0.0003 | 0.006      | 0.0001  |        |      | 1930 |           |            |      | 2   |
|                  | Treated Water Discharge | _      |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.000  | 0.000      |         |        |      |      |           |            |      | 2   |
|                  |                         |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | -    |       |      |       |        |            |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      | 0.0000 |        | 0.4  | 0.0424 |        | 0.005.05 |          | 0.004  |       |       |      |       | 2.4  | 8.1  | 0.04  |      | 0.004 | 0.0075 | 0.0077     | 0.0000  |        |      | 4000 |           |            |      | 6   |
|                  | Treated Water Discharge | 0.04   | _    | 0.0002 |        | 94   | 0.0124 |        | 8.00E-05 |          | 0.001  |       |       |      |       | 2.1  | -    | 0.01  |      | 0.004 | 0.0021 |            | 0.0002  |        |      | 1880 |           |            |      | 4   |
|                  | Treated Water Discharge | 0.71   |      | 0.0002 |        | 94   | 0.024  |        | 8.00E-05 |          | 0.0015 |       |       |      |       | 0.86 |      | 0.004 |      | 0.004 | 0.0005 |            | 0.0002  |        |      | 1940 |           |            |      | 3   |
|                  | Treated Water Discharge | 0.04   | l .  | 0.0002 |        | 98   | 0.0143 |        | 8.00E-05 |          | 0.001  |       |       |      |       | 0.64 | 8.8  | 0.004 |      | 0.004 | 0.0004 | 0.000      | 0.0002  |        |      | 1900 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.7  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.7  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.8  |       |      |       | 0.002  | 0.005      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.04   | l l  | 0.0002 |        | 82   | 0.0156 |        | 8.00E-05 |          | 0.001  |       |       |      |       | 0.65 |      | 0.004 |      | 0.004 | 0.0005 |            | 0.0002  |        |      | 1580 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.3  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.8  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.1  |       |      |       | 0.002  | 0.002      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.3  |       |      |       | 0.0026 | 0.0026     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.03   | 3    | 0.0001 |        | 67   | 0.0163 |        | 8.00E-05 |          | 0.0009 |       |       |      |       | 1.52 |      | 0.004 |      | 0.004 | 0.0045 |            | 0.0001  |        |      | 1620 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.9  |       |      |       | 0.0025 | 0.0025     |         |        |      |      |           |            |      | 5   |
| 20/07/2021 12:30 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.3  |       |      |       | 0.001  | 0.001      |         |        |      |      |           |            |      | 3   |
| 28/07/2021 15:00 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.1  |       |      |       | 0.0012 | 0.001      |         |        |      |      |           |            |      | 3   |
| 4/08/2021 13:10  | Treated Water Discharge | 0.02   | 2    | 0.0001 |        | 68   | 0.0127 |        | 8.00E-05 |          | 0.0005 |       |       |      |       | 1.2  | 7.7  | 0.007 |      | 0.004 | 0.0042 |            | 0.00023 |        |      | 1500 |           |            |      | 3   |
| 9/08/2021 12:25  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.0062 | 0.0068     |         |        |      |      |           |            |      | 3   |
| 17/08/2021 13:30 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.4  |       |      |       | 0.0093 | 0.0094     |         |        |      |      |           |            |      | 3   |
| 9/09/2021 0:00   | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      |      |       |      |       |        |            |         |        |      |      |           |            |      |     |
| 13/09/2021 12:55 | Treated Water Discharge | 0.02   | 2    | 0.0001 |        | 85   | 0.0103 |        | 8.00E-05 |          | 0.0005 |       |       |      |       | 1.94 | 8.6  | 0.014 |      | 0.004 | 0.0055 |            | 0.0001  |        |      | 1650 |           |            |      | 3   |
| 24/09/2021 9:50  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 7    |       |      |       | 0.0047 | 0.0052     |         |        |      |      |           |            |      | 3   |
| 28/09/2021 16:30 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.0064 | 0.0072     |         |        |      |      |           |            |      | 3   |
| 5/10/2021 11:02  | Treated Water Discharge | 0.02   | 2    | 0.0001 |        | 55   | 0.0109 |        | 8.00E-05 |          | 0.0007 |       |       |      |       | 1.93 | 8.7  | 0.009 |      | 0.004 | 0.0046 |            | 0.0001  |        |      | 1460 |           |            |      | 3   |
| 11/10/2021 13:22 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.0054 | 0.0058     |         |        |      |      |           |            |      | 3   |
| 19/10/2021 11:20 | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.0057 | 0.0057     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.02   | 2    | 0.0001 |        | 69   | 0.0127 |        | 8.00E-05 |          | 0.0006 |       |       |      |       | 0.97 | 8.6  | 0.002 |      | 0.004 | 0.0012 |            | 0.0001  |        |      | 1470 |           |            |      | 3   |
|                  | Treated Water Discharge | 0.02   |      | 0.0001 |        | 67   |        |        | 8.00E-05 |          | 0.0013 |       |       |      |       |      | 8.7  |       |      | 0.004 |        |            | 0.0001  |        |      | 1710 |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.8  |       |      |       | 0.0109 | 0.0107     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 1      |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.7  |       |      |       | 0.007  | 0.0071     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 1      |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.3  |       |      |       | 0.007  | 0.007      |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge |        |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 7.9  |       |      |       | 0.0111 | 0.0113     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | 0.02   | 2    | 0.0001 |        | 64   | 0.0088 |        | 8.00E-05 |          | 0.0011 |       |       |      |       | 3    |      | 0.006 |      | 0.005 |        |            | 0.00014 |        |      | 1750 |           |            |      | 3   |
|                  | Treated Water Discharge | 1 3.32 |      |        |        |      | 2.0000 |        | 2.232 03 |          |        |       |       |      |       |      | 8.5  | 2.300 |      | 2.003 | 0.0128 | 0.0127     |         |        |      |      |           |            |      | 3   |
|                  | Treated Water Discharge | +      |      |        |        |      |        |        |          |          |        |       |       |      |       |      | 8.6  |       |      |       | 0.0115 | 0.012      |         |        |      |      |           |            |      | 4   |
|                  | Treated Water Discharge | +      |      |        |        |      |        |        |          |          |        |       | -     |      |       | -    | 8.8  |       |      |       | 0.0113 | 0.012      |         |        |      |      |           |            |      | 2   |
| 23/12/2021 11.30 | Treated Water Discharge |        | 1    | 1      | l      |      |        |        |          |          |        |       |       |      |       |      | 0.0  |       |      |       | 0.0133 | 0.014      | l .     |        |      |      |           |            | 1    | J   |

| Date             | Data Point              | CNWAD | ZnA    | ZnS   |
|------------------|-------------------------|-------|--------|-------|
| 4/01/2021 10:30  | Treated Water Discharge | 0.02  | 0.002  |       |
| 11/01/2021 9:30  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.002 | 0.002  | 0.002 |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.001  |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge | +     |        |       |
|                  | Treated Water Discharge | +     |        |       |
|                  | Treated Water Discharge | +     |        |       |
|                  | Treated Water Discharge | 0.02  | 0.0014 |       |
|                  | Treated Water Discharge | 0.02  | 0.0014 |       |
|                  |                         |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.000  |       |
|                  | Treated Water Discharge | 0.02  | 0.002  |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       | 0.000- |       |
|                  | Treated Water Discharge | 0.02  | 0.0018 |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.0022 |       |
| 11/10/2021 13:22 | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.0018 |       |
|                  | Treated Water Discharge | 0.02  | 0.001  |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge | 0.02  | 0.001  |       |
| 13/12/2021 11:50 | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        |       |
|                  | Treated Water Discharge |       |        | 1     |



### Pit Wall Runoff Water Quality

No pit wall sampling was undertaken in 2021.

Dewatering and Settlement Monitoring Report 2021

Doc ref: WAI-200-REP-007-004

